Какими свойствами обладает углерод. Углерод – характеристика элемента и химические свойства

ОПРЕДЕЛЕНИЕ

Углерод - шестой элемент Периодической таблицы. Обозначение - С от латинского «carboneum». Расположен во втором периоде, IVА группе. Относится к неметаллам. Заряд ядра равен 6.

Углерод находится в природе как в свободном состоянии, так и в виде многочисленных соединений. Свободный углерод встречается в виде алмаза и графита. Кроме ископаемого угля, в недрах Земли находятся большие скопления нефти. В земной коре встречаются в огромных количествах соли угольной кислоты, особенно карбонат кальция. В воздухе всегда имеется диоксид углерода. Наконец, растительные и животные организмы состоят из веществ, в образовании которых участие принимает углерод. Таким образом, этот элемент - один из распространенных на Земле, хотя общее его содержание в земной коре составляет всего около 0,1% (масс.).

Атомная и молекулярная масса углерода

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии углерод существует в виде одноатомных молекул С, значения его атомной и молекулярной масс совпадают. Они равны 12,0064.

Аллотропия и аллотропные модификации углерода

В свободном состоянии углерод существует в виде алмаза, кристаллизующегося в кубической и гексагональной (лонсдейлит) системе, и графита, принадлежащего к гексагональной системе (рис. 1). Такие формы углерода, как древесный уголь, кокс или сажа имеют неупорядоченную структуру. Также есть аллотропные модификации, полученные синтетическим путем - это карбин и поликумулен - разновидности углерода, построенные из линейных цепных полимеров типа -C= C- или = C = C= .

Рис. 1. Аллотропные модификации углерода.

Известны также аллотропные модификации углерода, имеющие следующие названия: графен, фуллерен, нанотрубки, нановолокна, астрален, стеклоуглерож, колоссальные нанотрубки; аморфный углерод, углеродные нанопочки и углеродная нанопена.

Изотопы углерода

В природе углерод существует в виде двух стабильных изотопов 12 С (98,98%) и 13 С (1,07%). Их массовые числа равны 12 и 13 соответственно. Ядро атома изотопа углерода 12 С содержит шесть протонов и шесть нейтронов, а изотопа 13 С - такое же количество протонов и пять нейтронов.

Существует один искусственный (радиоактивный) изотоп углерода 14 Сс периодом полураспада равным 5730 лет.

Ионы углерода

На внешнем энергетическом уровне атома углерода имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 2 .

В результате химического взаимодействия углерод может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

С 0 -2e → С 2+ ;

С 0 -4e → С 4+ ;

С 0 +4e → С 4- .

Молекула и атом углерода

В свободном состоянии углерод существует в виде одноатомных молекул С. Приведем некоторые свойства, характеризующие атом и молекулу углерода:

Сплавы углерода

Наиболее известные сплавы углерода во всем мире - это сталь и чугун. Сталь - это сплав железа с углеродом, содержание углерода в котором не превышает 2%. В чугуне (тоже сплав железа с углеродом) содержание углерода выше - от 2-х до 4%.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем оксида углерода (IV) выделится (н.у.) при обжиге 500 г известняка, содержащего 0,1 массовую долю примесей.
Решение Запишем уравнение реакции обжига известняка:

CaCO 3 = CaO + CO 2 -.

Найдем массу чистого известняка. Для этого сначала определим его массовую долю без примесей:

w clear (CaCO 3) = 1 — w impurity = 1 - 0,1 = 0,9.

m clear (CaCO 3) = m(CaCO 3) ×w clear (CaCO 3);

m clear (CaCO 3) = 500 ×0,9 = 450 г.

Рассчитаем количество вещества известняка:

n(CaCO 3) = m clear (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 450 / 100 = 4,5 моль.

Согласно уравнению реакции n(CaCO 3) :n(CO 2) = 1:1, значит

n(CaCO 3) = n(CO 2) = 4,5 моль.

Тогда, объем выделившегося оксида углерода (IV) будет равен:

V(CO 2) = n(CO 2) ×V m ;

V(CO 2) = 4,5 × 22,4 = 100,8 л.

Ответ 100,8 л

ПРИМЕР 2

Задание Сколько потребуется раствора, содержащего 0,05 массовых долей, или 5% хлороводорода, для нейтрализации 11,2 г карбоната кальция?
Решение Запишем уравнение реакции нейтрализации карбоната кальция хлороводородом:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 -.

Найдем количество вещества карбоната кальция:

M(CaCO 3) = A r (Ca) + A r (C) + 3×A r (O);

M(CaCO 3) = 40 + 12 + 3×16 = 52 + 48 = 100 г/моль.

n(CaCO 3) = m (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 11,2 / 100 = 0,112 моль.

Согласно уравнению реакции n(CaCO 3) :n(HCl) = 1:2, значит

n(HCl) = 2 ×n(CaCO 3) = 2 ×0,224 моль.

Определим массу вещества хлороводорода, содержащуюся в растворе:

M(HCl) = A r (H) + A r (Cl) = 1 + 35,5 = 36,5 г/моль.

m(HCl) = n(HCl) ×M(HCl) = 0,224 × 36,5 = 8,176 г.

Рассчитаем массу раствора хлороводорода:

m solution (HCl) = m(HCl)× 100 / w(HCl);

m solution (HCl) = 8,176 × 100 / 5 = 163,52 г.

Ответ 163,52 г

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Углерод (С)

Углерод.


Углерод (Carboneum), С - химический элемент IV группы, побочной подгруппы, 2-го периода периодической системы Д. И. Менделеева, порядковый номер 6. Относительная атомная масса: 12,011. Электроотрицательность: 2,6. Температура плавления: 3370єС (сгорает). Температура кипения: 4200єС. Плотность (графит): 2,27 г/смі. Число собственных минералов углерода - 112; исключительно велико число органических соединений углерода - углеводородов и их производных. Углерод находится в природе как в свободном состоянии (в виде алмаза, графита), так и в виде соединений (содержится в горючих сланцах, буром и каменном углях, торфе и в виде соединений в нефти, природных горючих газах, в карбонатах). Все живые организмы построены из соединений углерода. Углерод широко распространен, но содержание его в земной коре всего 0,19%; также углерод широко распространён в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода. По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает углерод из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.


Историческая справка. В 1778 К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. Углерод был признан химическим элементом в 1789 Лавуазье. Латинское название "carboneum" углерод получил от "carbo" - уголь. А в 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе.


Углерод известен с древности. Издавна известно, что графитом можно маркировать другой материал, и само название «графит», происходящее от греческого слова, означающего «писать», предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны «черный свинец», «карбидное железо», «серебристый свинец». В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа.


Алмазы впервые нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В XX веке основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.


Физические и химические свойства. Известны четыре кристаллические модификации углерода: графит, алмаз, карбин и лонсдейлит. Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском, обладает электропроводимостью. Атомы расположены параллельными слоями, образуя гексагональную решетку. Внутри слоя атомы связаны сильнее, чем один слой с другим, поэтому графит может расслаиваться. Сгорает при 700єС в рисутствии кислорода. Встречается в природе; получается искусственно. При высокой температуре, давлении и рисутствии катализатора (марганец Mn, хром Cr, платиновые металлы) графит превращается в алмаз. Алмаз - минерал, имеющий желтоватый, белый, серый, зеленоватый, реже голубой и черный цвет. Не проводит электрический ток, плохо проводит тепло. В кристалле атомы углерода образуют непрерывный трехмерный каркас, состоящий из сочлененных тетраэдров, что обеспечивает высокую прочность связей. Алмаз - это самое твердое вещество из всех известных. Температура плавления выше 3500єС. Химически стоек. Сгорает при 870єС в присутствии кислорода. При 1800єС в отсутствие кислорода превращается в графит. Прозрачные кристаллы; после обработки - бриллианты. Добывают из россыпей и коренных месторождений. Синтетический алмаз получают из графита при высоких давлении и температуре. Он чаще полупрозрачный или непрозрачный; имеет кристаллическую структуру и свойства природного алмаза. Жидкий углерод может быть получен при давлениях выше 10,5 Мн/мІ (105 кгс/смІ) и температурах выше 3700єС. Кокс, сажа, древесный уголь (твердый углерод ) имеют то же строение, что и графит.Для твёрдого углерода характерно также состояние с неупорядоченной структурой - так называемый "аморфный" углерод , который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей "аморфного" углерода выше 1500-1600єС без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" углерода очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоёмкость, теплопроводность и электропроводность "аморфного" углерода всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность = 2 г/смі). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.




А Б

Структура алмаза (а) и графита (б).


Конфигурация внешней электронной оболочки атома углерода 2s І 2p І . Для углерода характерно образование четырёх ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp і . Химическая связь может осуществляться за счет sp 3 -, sp 2 - и sp - гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов углерода и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами углерода.



Строение атома углерода.


Уникальная способность атомов углерода соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений углерода (углеводородов), изучаемых органической химией.


В соединениях углерод проявляет степени окисления -4; +2; +4. Атомный радиус 0,77Б, ковалентные радиусы 0,77Б, 0,67Б, 0,60Б соответственно в одинарной, двойной и тройной связях; ионной радиус

С4- 2,60Б, С4+ 0,20Б. При обычных условиях углерод химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: "аморфный" углерод, графит, алмаз; взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300-500єС, 600-700єС и 850-1000єС с образованием двуокиси углерода CO2 и окиси углерода CO.


CO2 растворяется в воде с образованием угольной кислоты. В 1906 О. Дильс получил недоокись углерода C3O2. Все формы углерода устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO3 и KClO3 и др.). "Аморфный" углеод реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение углерода с хлором происходит в электрической дуге; с бромом и иодом углерод не реагирует, поэтому многочисленные галогениды углерода синтезируют косвенным путём. Из оксигалогенидов общей формулы COX2 (где Х - галоген) наиболее известна хлорокись COCl2 (фосген). Водород с алмазом не взаимодействует; с графитом и "аморфным" углеродом реагирует при высоких температурах в присутствии катализаторов (никель Ni, платина Pt): при 600-1000єС образуется в основном метан CH4, при 1500-2000єС - ацетилен C2H2, в продуктах могут присутствовать также другие углеводороды, например этан C2H6, бензол C6H6. Взаимодействие серы с "аморфным" углеродом и графитом начинается при 700-800єС, с алмазом при 900-1000єС; во всех случаях образуется сероуглерод CS2. Другие соединения углерода, содержащие серу (тиоокись CS, тионедоокись C3S2, сероокись COS и тиофосген CSCl2), получают косвенным путём. При взаимодействии CS2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие углерода с азотом с получением циана (CN)2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений углерода важное практическое значение имеют цианистый водород HCN и его многочисленные производные: цианиды, гало-генцианы, нитрилы и др. При температурах выше 1000єС углерод взаимодействует со многими металлами , давая карбиды. Все формы углерода при нагревании восстанавливают окислы металлов с образованием свободных металлов (Zn, Cd, Cu, Pb и др.) или карбидов (CaC2, Mo2C, WC, TaC и др.). Углерод реагирует при температурах выше 600-800°С с водяным паром и углекислым газом. Отличительной особенностью графита является способность при умеренном нагревании до 300-400єС взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа C8Me, C24Me, C8X (где Х - галоген, Me - металл). Известны соединения включения графита с HNO3, H2SO4, FeCl3 и другие (например, бисульфат графита C24SO4H2). Все формы углерода нерастворимы в обычных неорганических и органических растворителях , но растворяются в некоторых расплавленных металлах (например, железо Fe, никель Ni, кобальт Co).


Изотопы углерода. В природе известно семь изотопов углерода, из которых существенную роль играют три. Два из них - и - являются стабильными, а один - - радиоактивным (в организме человека его содержится около 0,1мккюри ). С использованием изотопов углерода в биологических и медицинских исследованиях связаны многие крупные достижения в изучении обмена веществ и круговорота углерода в природе. Так, с помощью радиоуглеродной метки была доказана возможность фиксации Н14СО3 растениями и тканями животных, установлена последовательность реакции фотосинтеза, изучен обмен аминокислот, прослежены пути биосинтеза многих биологически активных соединений и т. д. Применение 14С способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14С в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.


Углерод в организме. Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления углерода. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений.



Роль углерода в живой природе. Уникальная роль углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один другой элемент периодической системы. Между атомами углерода, а также между углеродом и другими элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность углерода образовывать 4 равнозначные валентные связи с другими атомами углерода создаёт возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - углерод С, кислород О и водород Н - составляют 98% общей массы живых организмов. Этим достигается определённая экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома углерода лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).


Согласно общепринятой гипотезе А. И. Опарина, первые органические соединения на Земле имели абиогенное происхождение. Источниками углерода служили метан (CH4) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического углерода, за счёт которого образуется всё органическое вещество биосферы, является двуокись углерода (CO2), находящаяся в атмосфере, а также растворённая в природных водах в виде HCO-3. Наиболее мощный механизм усвоения (ассимиляции) углерода (в форме CO2) - фотосинтез - осуществляется повсеместно зелёными растениями (ежегодно ассимилируется около 100 млрд. т CО2). На Земле существует и эволюционно более древний способ усвоения CO2 путём хемосинтеза; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют углерод с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы. Применение для биосинтеза белка и других питательных веществ микроорганизмов, использующих в качестве единственного источника углерода углеводороды нефти,- одна из важных современных научно-технических проблем.


Помимо основной функции - источника углерода - двуокись углерода CO2, растворённая в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе CaCO3 углерод образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и др. Такие соединения углерода, как HCN, CO, CCl4, преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.


Круговорот углерода. Углерод - основной биогенный элемент; он играет важнейшую роль в образовании живого вещества биосферы. Углекислый газ из атмосферы в процессе фотосинтеза, осуществляемого зелёными растениями, ассимилируется и превращается в разнообразные и многочисленные органические соединения растений. Растительные организмы, особенно низшие микроорганизмы, морской фитопланктон, благодаря исключительной скорости размножения продуцируют в год около 1,5·10№№ т углерода в виде органической массы, что соответствует

5,86·10Іє Дж (1,4·10Ієкал) энергии. Растения частично поедаются животными (при этом образуются более или менее сложные пищевые цепи). В конечном счёте органическое вещество в результате дыхания организмов, разложения их трупов, процессов брожения, гниения и горения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, которые, в свою очередь, дают начало многим др. каустобиолитам - каменным углям, нефти, горючим газам.


Круговорот углерода.


В процессах распада органических веществ, их минерализации огромную роль играют бактерии (например, гнилостные), а также многие грибы (например, плесневые).


В активном круговороте углерода участвует очень небольшая часть всей его массы. Огромное количество угольной кислоты законсервировано в виде ископаемых известняков и других пород. Между углекислым газом атмосферы и водой океана, в свою очередь, существует подвижное равновесие.


Таблица: Содержание углерода на поверхности Земли и в земной коре (16 км мощности)

В т В г на 1 см І поверхности Земли

Животные 5·109 0,0015

Растения 5·10№№ 0,1

Атмосфера 6,4·10№№ 0,125

Океан 3,8·10№і 7,5

Массивные кристаллические

породы: базальты и др. 1,7·1014 33,0

основные породы

Граниты, гранодиориты 2,9·1015 567

Угли, нефти и другие

каустобиолиты 6,4·1015 663

Кристаллические сланцы 1·1016 2000

Карбонаты 1,3·1016 2500

Всего 3,2·1016 5770


Многие водные организмы поглощают углекислый кальций, создают свои скелеты, а затем из них образуются пласты известняков. Из атмосферы было извлечено и захоронено в десятки тысяч раз больше углекислого газа, чем в ней находится в данный момент. Атмосфера пополняется углекислым газом благодаря процессам разложения органического вещества, карбонатов и др., а также, всё в большей мере, в результате индустриальной деятельности человека. Особенно мощным источником являются вулканы, газы которых состоят главным образом из углекислого газа и паров воды. Некоторая часть углекислого газа и воды, извергаемых вулканами, возрождается из осадочных пород, в частности известняков, при контакте магмы с ними и их ассимиляции магмой. В процессе круговорота углерода происходит неоднократное фракционирование его по изотопному составу (№ІC - №іC), особенно в магматогенном процессе (образование CO2, алмазов, карбонатов), при биогенном образовании органического вещества (угля, нефти, тканей организмов и др.).


Применение углерода. Углерод широко используется в виде простых веществ. Драгоценный алмаз является предметом ювелирных украшений; непрозрачный алмаз - ценный абразив, а так же материал для изготовления резцов и другого инструмента. Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Графит применяют для изготовления плавильных тиглей, футеровочных плит, электродов, твердых смазочных материалов; в ракетной технике; как замедлитель нейтронов в ядерных реакторах; компонент состава для изготовления стержней для арандашей; для получения алмаза; наполнитель пластмасс. Каменноугольный кокс используется в черной металлургии в качестве топлива и восстановителя в доменных печах и вагранках. Нефтяной и электродный пековый кокс применяется для изготовления угольных и графитированных электродов, реже - как топливо. Сажа (технический углерод) применяется как наполнитель в производстве резины, пластмасс; пигмент в лакокрасочной промышленности; для изготовления электродов и т. п. Карбиды , соединения углерода с металлами, а также с бором и кремнием (например, Al4C3, SiC, B4C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод применяется для получения металлов из их оксидов. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость.


Применение алмаза в ювелирных украшениях,

графита в карандашах.


Список литературы: 1) "Большая школьная энциклопедия", т. 2, изд. "Олма-пресс"

2) Интернет: www.encycl.yandex, www.krugosvet, wwwrmika.

Два десятилетия подряд уголь находился в тени нефтяного бума. Горы не находившего сбыт угля росли в небо. Закрывались многочисленные шахты, сотни тысяч горняков теряли свое рабочее место. Район Аппалачей США, когда-то цветущий угольный бассейн, превратился в один из наиболее мрачных районов бедс...

Строение атома водорода в периодической системе. Степени окисления. Распространенность в природе. Водород, как простое вещество, молекулы которого состоят из двух атомов, связанных между собой ковалентной неполярной связью. Физико-химические свойства.

Алмаз. При слове “алмаз” сразу же вспоминаются окутанные завести тайны истории,повествующие о поисках сокровищ.Когда-то люди, охотившиеся за алмазами, и не подозревали, что предметов их страсти является кристаллический углерод-тот самый углерод, который образует сажу, копоть и уголь.Впе...

Сведения об углероде, восходящие к древности и распространение его в природе. Наличие углерода в земной коре. Физические и химические свойства углерода. Получение и применение углерода и его соединений. Адсорбционная способность активированного угля.

Химические свойства простых веществ. Общие сведения об углероде и кремнии. Химические соединения углерода, его кислородные и азотсодержащие производные. Карбиды, растворимые и нерастворимые в воде и разбавленных кислотах. Кислородные соединения кремния.

Углерод (латинское carboneum), С, химический элемент iv группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12 c (98,892%) и 13 c (1,108%). Из радиоактивных изотопов наиболее важен 14 c с периодом полураспада (Т = 5,6 ? 10 3 лет). Небольшие количества 14 c (около 2 ? 10 -10 % по массе) постоянно образуются в верхних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14 n. По удельной активности изотопа 14 c в остатках биогенного происхождения определяют их возраст. 14 c широко используется в качестве .

Историческая справка . У. известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применять графит для изготовления тиглей и карандашей.

В 1778 К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. У. был признан химическим элементом в 1789 Лавуазье. Латинское название carboneum У. получил от carbo - уголь.

Распространение в природе. Среднее содержание У. в земной коре 2,3 ? 10 -2 % по массе (1 ? 10 -2 в ультраосновных, 1 ? 10 -2 - в основных, 2 ? 10 -2 - в средних, 3 ? 10 -2 - в кислых горных породах). У. накапливается в верхней части земной коры (биосфере): в живом веществе 18% У., древесине 50%, каменном угле 80%, нефти 85%, антраците 96%. Значительная часть У. литосферы сосредоточена в известняках и доломитах.

Число собственных минералов У. - 112; исключительно велико число органических соединений У. - углеводородов и их производных.

С накоплением У. в земной коре связано накопление и многих др. элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т.д. Большую геохимическую роль в земной коре играют co 2 и угольная кислота. Огромное количество co 2 выделяется при вулканизме - в истории Земли это был основной источник У. для биосферы.

По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает У. из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.

Огромное геохимическое значение имеет круговорот У.

У. широко распространён также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.

Физико и химические свойства. Известны четыре кристаллические модификации У.: графит, алмаз, карбин и лонсдейлит. Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры: а=2,462 a , c=6,701 a . При комнатной температуре и нормальном давлении (0,1 Мн/м 2 , или 1 кгс/см 2 ) графит термодинамически стабилен. Алмаз - очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку: а = 3,560 a . При комнатной температуре и нормальном давлении алмаз метастабилен (подробно о структуре и свойствах алмаза и графита см. в соответствующих статьях). Заметное превращение алмаза в графит наблюдается при температурах выше 1400 °С в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °С графит возгоняется. Жидкий У. может быть получен при давлениях выше 10,5 Мн/м 2 (105 кгс/см 2 ) и температурах выше 3700 °С. Для твёрдого У. (кокс, сажа, древесный уголь ) характерно также состояние с неупорядоченной структурой - так называемый «аморфный» У., который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей «аморфного» У. выше 1500-1600 °С без доступа воздуха вызывает их превращение в графит. Физические свойства «аморфного» У. очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоёмкость, теплопроводность и электропроводность «аморфного» У. всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см 3 ) . Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.

Конфигурация внешней электронной оболочки атома У. 2s 2 2p 2 . Для У. характерно образование четырёх ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2 sp 3 . Поэтому У. способен в равной степени как притягивать, так и отдавать электроны. Химическая связь может осуществляться за счёт sp 3 -, sp 2 - и sp -гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов У. и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами У.

Уникальная способность атомов У. соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений У., изучаемых органической химией.

В соединениях У. проявляет степени окисления -4; +2; +4. Атомный радиус 0,77 a , ковалентные радиусы 0,77 a , 0,67 a , 0,60 a соответственно в одинарной, двойной и тройной связях; ионный радиус c 4- 2,60 a , c 4+ 0,20 a . При обычных условиях У. химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: «аморфный» У., графит, алмаз; взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300-500 °С, 600-700 °С и 850-1000 °С с образованием двуокиси углерода co 2 и окиси углерода co.

co 2 растворяется в воде с образованием угольной кислоты. В 1906 О. Дильс получил недоокись У. c 3 o 2 . Все формы У. устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных hno 3 и kclo 3 и др.). «Аморфный» У. реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение У. с хлором происходит в электрической дуге; с бромом и иодом У. не реагирует, поэтому многочисленные углерода галогениды синтезируют косвенным путём. Из оксигалогенидов общей формулы cox 2 (где Х - галоген) наиболее известна хлорокись cocl 2 (фосген ) . Водород с алмазом не взаимодействует; с графитом и «аморфным» У. реагирует при высоких температурах в присутствии катализаторов (ni, pt): при 600-1000 °С образуется в основном метан ch 4 , при 1500- 2000 °С - ацетилен c 2 h 2 , в продуктах могут присутствовать также др. углеводороды, например этан c 2 h 6 , бензол c 6 h 6 . Взаимодействие серы с «аморфным» У. и графитом начинается при 700-800 °С, с алмазом при 900-1000 °С; во всех случаях образуется сероуглерод cs 2 . Др. соединения У., содержащие серу (тиоокись cs, тионедоокись c 3 s 2 , сероокись cos и тиофосген cscl 2), получают косвенным путём. При взаимодействии cs 2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие У. с азотом с получением циана (cn) 2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений У. важное практическое значение имеют цианистый водород hcn и его многочисленные производные: цианиды, гало-генцианы, нитрилы и др. При температурах выше 1000 °С У. взаимодействует со многими металлами, давая карбиды. Все формы У. при нагревании восстанавливают окислы металлов с образованием свободных металлов (zn, cd, cu, pb и др.) или карбидов (cac 2 , mo 2 c, wo, tac и др.). У. реагирует при температурах выше 600- 800 °С с водяным паром и углекислым газом. Отличительной особенностью графита является способность при умеренном нагревании до 300-400 °С взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа c 8 me, c 24 me, c 8 x (где Х - галоген, me - металл). Известны соединения включения графита с hno 3 , h 2 so 4 , fecl 3 и др. (например, бисульфат графита c 24 so 4 h 2). Все формы У. нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, fe, ni, co).

Народнохозяйственное значение У. определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза, для получения пластических масс и др.

Б. А. Поповкин.

У. в организме . У. - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и др.). Значительная часть необходимой организмам энергии образуется в клетках за счёт окисления У. Возникновение жизни на Земле рассматривается в современной науке как сложный процесс эволюции углеродистых соединений.

Уникальная роль У. в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один др. элемент периодической системы. Между атомами У., а также между У. и др. элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность У. образовывать 4 равнозначные валентные связи с др. атомами У. создаёт возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - С, О и Н - составляют 98% общей массы живых организмов. Этим достигается определённая экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома У. лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).

Согласно общепринятой гипотезе А. И. Опарина, первые органические соединения на Земле имели абиогенное происхождение. Источниками У. служили метан (ch 4) и цианистый водород (hcn), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического У., за счёт которого образуется всё органическое вещество биосферы, является углерода двуокись (co 2), находящаяся в атмосфере, а также растворённая в природных водах в виде hco - 3 . Наиболее мощный механизм усвоения (ассимиляции) У. (в форме co 2) - фотосинтез - осуществляется повсеместно зелёными растениями (ежегодно ассимилируется около 100 млрд. т co 2). На Земле существует и эволюционно более древний способ усвоения co 2 путём хемосинтеза; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют У. с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы. Применение для биосинтеза белка и др. питательных веществ микроорганизмов, использующих в качестве единственного источника У. углеводороды нефти,- одна из важных современных научно-технических проблем.

Содержание У. в живых организмах в расчёте на сухое вещество составляет: 34,5-40% у водных растений и животных, 45,4-46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов, в основном за счёт тканевого дыхания, происходит окислительный распад органических соединений с выделением во внешнюю среду co 2 . У. выделяется также в составе более сложных конечных продуктов обмена веществ. После гибели животных и растений часть У. вновь превращается в co 2 в результате осуществляемых микроорганизмами процессов гниения. Таким образом происходит круговорот У. в природе. Значительная часть У. минерализуется и образует залежи ископаемого У.: каменные угли, нефть, известняки и др. Помимо основные функции - источника У.- co 2 , растворённая в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе caco 3 У. образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и др. Такие соединения У., как hcn, co, ccl 4 , преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.

Помимо стабильных изотопов У., в природе распространён радиоактивный 14 c (в организме человека его содержится около 0,1 мккюри ) . С использованием изотопов У. в биологических и медицинских исследованиях связаны многие крупные достижения в изучении обмена веществ и круговорота У. в природе. Так, с помощью радиоуглеродной метки была доказана возможность фиксации h 14 co - 3 растениями и тканями животных, установлена последовательность реакций фотосинтеза, изучен обмен аминокислот, прослежены пути биосинтеза многих биологически активных соединений и т.д. Применение 14 c способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14 c в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии.

Н. Н. Чернов.

Лит.: Шафрановский И. И., Алмазы, М. - Л., 1964; Уббелоде А. Р., Льюис Ф. А., Графит и его кристаллические соединения, пер. с англ., М., 1965; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1972; Перельман А. И., Геохимия элементов в зоне гипергенеза, М., 1972; Некрасов Б. В., Основы общей химии, 3 изд., М., 1973; Ахметов Н. С., Неорганическая химия, 2 изд., М., 1975; Вернадский В. И., Очерки геохимии, 6 изд., М., 1954; Рогинский С. З., Шноль С. Э., Изотопы в биохимии, М., 1963; Горизонты биохимии, пер. с англ., М., 1964; Проблемы эволюционной и технической биохимии, М., 1964; Кальвин М., Химическая эволюция, пер. с англ., М., 1971; Лёви А., Сикевиц Ф., Структура и функции клетки, пер. с англ., 1971, гл. 7; Биосфера, пер. с англ., М., 1972.

Скачать реферат

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза – тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 – и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 – гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .



При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

– с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода – неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

– со фтором
С + 2F 2 = CF 4

– с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

– с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

– с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

– с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

– с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

– с водородом – метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

– с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.


Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории – термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде – в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется “сухой лёд”); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 – Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 – Кислые соли – бикарбонаты, гидрокарбонаты
HCO 3 – ↔ H + + CO 3 2- Cредние соли – карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция – “вскипание” при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над “виталистической теорией”.

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее “азотный аналог” – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 – .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 –

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует “парниковому эффекту” – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.




glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника