Особенности турбинных масел. Влияние металлических поверхностей

ОБЩИЕ СВЕДЕНИЯ

:

Агрегатное состояние. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . жидкое

Внешний вид. . . . . . . . вязкая жидкость от светло-желтого до темно-коричневого цвета.

Запах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . специфический.

Применение: для смазывания подшипников и вспомогательных механизмов турбоагрегатов (паровых и газовых турбин, турбокомпрессорных машин, гидротурбин), а также для работы в системах регулирования этих машин в качестве гидравлической жидкости.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность при 20 °С, кг/м3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860-900

Температура застывания при давлении 101,3 кПа, °С:

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 15

Марка Т30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Марка Т46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Удельная теплота сгорания, кДж/кг. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41870

Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не растворимо.

Реакционная способность: растворяется в растворителях, масла - химически инертны.

САНИТАРНО-ГИГИЕНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Регистрационный номер по CAS для масел минеральных нефтяных. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8042-47-5

Класс опасности в воздухе рабочей зоны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р. в воздухе рабочей зоны, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Код вещества, загрязняющего атмосферный воздух. . . . . . . . . . . . . . . . 2735

ОБУВ в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,05

Воздействие на людей: малотоксичное. Хроническое отравление может привести к заболеваниям кожи: масляный фолликулит, токсические меланодермии, экземы, кератозы, папилломы.

Меры предосторожности: в помещениях запрещается обращение с открытым огнем. Электрооборудование, искусственное освещение должны быть во взрывобезопасном исполнении. Не допускается использовать инструменты, дающие искру при ударе. Помещение должно быть оснащено вентиляцией.

Средства защиты: следует применять индивидуальные средства защиты: респираторы, резиновые перчатки, спецодежду, фартук. Не допускать попадания препарата внутрь организма.

Методы перевода вещества в безвредное состояние: при разливе масла необходимо собрать его в отдельную тару, место разлива засыпать песком с последующим удалением массы песка, пропитанного маслом.

ПОЖАРОВЗРЫВООПАСНЫЕ СВОЙСТВА

Группа горючести. . . . . . . . . . . . . . . . . . . . . . . . . . . . . трудногорючая жидкость

Температура вспышки, °С

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Марка Т57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Температура самовоспламенения, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Средства пожаротушения: . . . . . . . воздушно-механическая пена, порошки.

Турбинные масла предназначены для смазывания и охлаждения подшипников различных турбоагрегатов: паровых и газовых турбин, гидротурбин, турбокомпрессорных машин.

Эти же масла используют в качестве рабочих жидкостей в циркуляционных системах, гидравлических системах различных промышленных механизмов.

Общие требования и свойства

Какие свойства особенно важны?

Во-первых, высокую окислительную стойкость, малое осадкообразование, водостойкость, т.к. вода может оказаться в системе смазки в процессе работы, антикоррозионная защита.

Эти рабочие качества получаются благодаря применению качественной нефти, тщательной очистки перед добавлением пакета присадок, повышающих противоокислительные, противокоррозионные и даже противоизносные технические свойства.

Турбинное масло в паровых турбинах, электрических насосах и турбонасосах должно соответствовать таким стандартам: кислотное число в пределах 0,3 мг КОН/г; в масле не должна содержаться вода, шлам и механические примеси.

Характеристики масла после окисления согласно ГОСТ 981-75:

  • Кислотное число – не выше 0,8 мг КОН/г
  • Массовая доля осадка – не выше 0,15 %

Стабильность вычисляют при температурной отметке +120 °С, временном отрезке – 14 ч, расходе кислорода 200 мл/мин.

Инструкция по эксплуатации оговаривает и контроль за коррозионными свойствами масла. При возникновении коррозии добавьте в масло антикоррозийную присадку.

Вот масло Тп-30 при работе в гидротурбинах должно отвечать таким стандартам: кислотное число – не выше 0,6 мг КОН/г; в масле не должна содержаться вода, шлам и прочие механические примеси; процентное содержание растворенного шлама – в пределах 0,01.

В случае уменьшения кислотного числа масла Тп-30 до 0,1 мг КОН/г и дальнейшем его повышении масло подвергается тщательной проверке для увеличения рабочего срока службы. Имеется в виду введение антиокислителя и очистка масла от шлама.

Масло полностью заменяется, если сделан вывод о невозможности его восстановления.

Перечень отечественных турбинных масел

Масло Тп-22С включает в себя набор присадок, повышающих противоокислительные и противокоррозионные свойства.

Рассчитано для применения в паровых турбинах, работающих на высоких оборотах, и в турбокомпрессорах, когда вязкость масла обеспечивает достижение требуемых антиизносных качеств. Это самое распространенное турбинное масло.

Масло Тп-22Б изготавливают из парафинистой нефти, очищенной растворителями. В его составе есть присадки, повышающие антиокислительные и антикоррозионные качества.

Если сопоставить его с маслом Тп-22С, то в масле Тп-22Б более высокие антиокислительные свойства, продолжительный рабочий срок, малое осадкообразование при эксплуатации.

Не имеет аналогов среди российских турбинных масел в случае использования для турбокомпрессоров на производстве аммиака.

Масла Тп-30, Тп-46 изготавливаются из парафинистой нефти с использованием очищения растворителем. В составе есть присадки, повышающие противоокислительные, противокоррозионные и прочие свойства масла.

Где используют масло Тп-30? В гидротурбинах, ряде турбо-, центробежных компрессоров. Турбинное масло Тп-46 применяют в судовых паросиловых установках, оборудованных редукторами, работающими под тяжелой нагрузкой.

Масла Т22, Т30, Т46, Т57 вырабатывают из высококачественной малосернистой беспарафинистой нефти. Нужные рабочие качества масла достигаются благодаря правильному подбору сырья и очищению.

Масла отличаются вязкостью и в их составе нет присадок. Однако на отечественном рынке такие масла присутствуют в довольно ограниченном количестве.

Масло Т22 имеет такие же сферы использования, что и масла Тп-22С и ТП-22Б.

Масло Т30 применяют в гидравлических турбинах, паровых турбинах, работающих на низких оборотах, турбинных и центробежных компрессорах с сильнонагруженными редукторами. Масло Т46 разработано для судовых паротурбинных установок и иных судовых механизмов, оборудованных гидроприводом.

Таблица 1. Характеристики турбинных масел

Показатели Тп-22С Тп-22Б Тп-30 Тп-46 Т22 Т30 Т46 Т57

температуре +50 °С, мм 2 /с
20-23 - - - 20-23 28-32 44-48 55-59
Кинематическая вязкость при
температуре +40 °С, мм 2 /с
28,8-35,2 28,8-35,2 41,4-50,6 61,2-74,8 - - - -
Индекс вязкости, не менее 90 95 95 90 70 65 60 70
0,07 0,07 0,5 0,5 0,02 0,02 0,02 0,05
+186 +185 +190 +220 +180 +180 +195 +195
-15 -15 -10 -10 -15 -10 -10 -
Массовая доля водорастворимых кислот и щелочей Отсутствие - Отсутствие
Массовая доля механических примесей Отсутствие
Массовая доля фенола Отсутствие
Массовая доля серы, %, не более 0,5 0,4 0,8 1,1 - - - -
Стабильность против окисления, не более: осадок, %, (маc. доля) 0,005 0,01 0,01 0,008 0,100 0,100 0,100 -
Стабильность против окисления не более: летучие низкомолекулярные кислоты, мг КОН/г 0,02 0,15 - - - - - -
Стабильность против окисления, не более: кислотное число, мг КОН/г 0,1 0,15 0,5 0,7 0,35 0,35 0,35 -
Стабильность против окисления в универсальном приборе, не более: осадок, %, (маc доля) - - 0,03 0,10 - - - -
Стабильность против окисления в универсальном приборе, не более: кислотное число, мг КОН/г - - 0,4 1,5 - - - -
Зольность базового масла, %, не более - - 0,005 0,005 0,005 0,005 0,010 0,030
Число деэмульсации, с, не более 180 180 210 180 300 300 300 300
Коррозия на стальном стержне Отсутствие - - - -
Коррозия на медной пластинке, группа - - 1 1 Отсутствие
Цвет, ед ЦНТ, не более 2,5 2,0 3,5 5,5 2,0 2,5 3,0 4,5
Плотность при +20 °С, кг/м 3 , не более 900 - 895 895 900 900 905 900

Таблица 2. Условия окисления при определении стабильности по методу ГОСТ 981-75

Масло
Температура, °С
Длительность
Расход кислорода, мл/мин
Тп-22С
+130
24
83
Тп-22Б
+150
24
50
Тп-30
+150
15
83
Тп-46
+120
14
200

Масло для судовых газовых турбин вырабатывают из трансформаторного масла, в которое заливают противозадирную и антиокислительную присадки. Таким маслом смазывают и понижают температуру редукторов и подшипников газовых турбин на судах.

Таблица 3. Технические характеристики масла для судовых газовых турбин

Показатели Норма
Кинематическая вязкость при температуре +50 °С, мм 2 /с 7,0-9,6
Кинематическая вязкость при температуре +20 °С, мм 2 /с 30
Кислотное число, мг КОН/г, не более 0,02
Температура вспышки в открытом тигле, °С, не ниже +135
Температура застывания, °С, не выше -45
Зольность, %, не более 0,005
Стабильность против окисления: массовая доля осадка после окисления, %, не более 0,2
Стабильность против окисления: кислотное число, мг КОН/г, не более 0,65

Нефтяные синтетические смазочные масла и смазочно-охлаждающие жидкости или смеси (СОЖ) широко применяются в промышленности (и механических, кузнечнопрессовых и других цехах для смазки и охлаждения трущихся металлических частей).

Нефтяные масла - высокомолекулярные вязкие жидкости желтовато-коричневого цвета. Основными компонентами нефтяных масел являются алифатические, ароматические и нафтеновые углеводороды с примесью их кислородных, сернистых и азотистых производных. Для получения специальных технических свойств в нефтяные масла часто вводятся различный присадки, например полиизобутилен, соединения железа, меди, хлора, серы, фосфора и др.

Большинство синтетических смазочных масел (турбинные, автотракторные, компрессорные, моторные, индустриальные и др.) получается путем полимеризации олефинов, например этилена, пропилена.

В состав СОЖ входят минеральные масла и эмульгаторы из натриевых солей нафтеновых кислот (асидол). Выпускаются эмульсии и пасты. Основой СОЖ служит эмульсолы - коллоидные растворы мыла и органических кислот в минеральных маслах, дающие с водой или спиртом устойчивые эмульсии.

В процессе работы станков смазочные масла и СОЖ нагреваются (до 500-700°С), и в воздух рабочей зоны выделяются туманы масел, пары углеводородов, альдегидом, окись углерода и другие токсические вещества.

Токсическое действие смазочных масел может проявиться главным образом при чистом попадании масла на открытые участки тела, при длительной работе в одежде, пропитанной маслом, а также при вдыхании тумана. Токсичность смазочных масел усиливается с повышением температуры кипения масляных фракций, с повышением их кислотности, и увеличением в их составе количества ароматических углеводородов, смол и сернистых соединении.

Масло и охлаждающие смеси в виде аэрозолей (ПДК для масляного аэрозоля - 5 мг/м3) могут оказывать резорбтивное действие, попадая в организм через органы дыхания, а также поражать последние. При этом наибольшую потенциальную опасность представляют смазочные масла, содержащие в своем составе летучие углеводороды (бензин, бензол и др.) или сернистые соединения.

Острое отравление

Описаны острые отравления при чистке цистерн из-под нефтяных масел, а также аэрозолем охлаждающих масел у работавших в помещении при высокой температуре. Симптомы отравления были сходными с наблюдающимися при остром .

Хроническое отравление

У рабочих механических (токари, фрезеровщики, шлифовщики) и других цехов при контакте с СОЖ часто наблюдаются хронические гипертрофические, реже - атрофические риниты, фарингиты, тонзиллиты, бронхиты. Возможно развитие пневмосклероза. Характерны вегетативно-сосудистые расстройства с преимущественным нарушением периферического кровообращения по типу ангиоспастического синдрома, напоминающего синдром Рейно, и вегетативного полиневрита. Имеются сведения о возможности развития липоидной пневмонии и опухолей дыхательных путей у лиц, длительно вдыхающих аэрозоли, и пары различных нефтяных масел. В большинстве случаев липоидная пневмония протекает бессимптомно.

Нефтяные масла и охлаждающие смеси оказывают на кожу обезжиривающее действие и способствуют закупорке ее пор. Это приводит к возникновению различных кожных заболеваний (дерматиты, экземы, фолликулиты, масляные угри); возможно развитие сенсибилизации к химическим агентам, используемым в качестве присадок

Некоторые масла могут вызывать кератодермии, бородавчатые разрастания, папилломы, кожный рак.

Длительный контакт с парами минеральных масел и эмульсий может способствовать заболеванию раком легких и бронхов, а также мочевого пузыря.

Могут иметь место повреждения кожных покровов (особенно кистей рук) смазочными маслами, попадающими под кожу во время испытания под большим давлением маслопроводов, дизелей и пр. При этом масло пробивает кожу и вызывает развитие отека в подкожной ткани. Резкие боли и отек держатся 8-10 дней.

У лиц, контактирующих с нефтяным гудроном, наблюдаются фотодерматозы и заболевания типа меланоза: пигментация кожи открытых и подвергающихся трению частей тела, усиленное фолликулярное ороговение, атрофия; явления типа меланоза Риля (темно-красные и бурые пятна, местами сливающиеся), фолликулярные кератозы на руках, туловище и по краю волосистой части головы встречаются среди работающих с масляными аэрозолями.

Лечение синдромальное.

Экспертиза трудоспособности

В зависимости от характера заболевания, наличия аллергического компонента, стойкости заболевания и его рецидивов - временное или постоянное отстранение от работы.

Профилактика

Важное значение для профилактики кожных заболеваний имеет уход за кожей до и после работы, правильное использование защитных паст и отмывочных средств. Рекомендуются различные защитные гидрофильные мази и пасты, пленкообразующие гидрофильные пасты, гидрофобные мази и пасты, пленки, силиконовый крем.

В целях уменьшения ощелачивания кожи при работе с СОЖ рекомендуется обмывать руки слабым раствором соляной кислоты во время перерывов в работе. После окончания смены - мытье рук водой и смазывание кожу мазями (крем с витаминами А, Е и т.п.). Для удаления масляных и других загрязнений применяются так называемые промышленные очистители. Соблюдение мер личной гигиены (мытье в душе, частая смена спецодежды и т. д.). Профилактика и лечение микротравм.

При работе в атмосфере, загрязненной большими концентрациями аэрозоля или паров смазочных масел, необходимо пользоваться противогазами.

Не следует допускать к работе лиц, страдающих любыми заболеваниями кожи.

18.09.2012
Турбинные масла: классификация и применение

1. Введение

Паровые турбины существуют уже более 90 лет. Они представляют собой двигатели с вращающимися элементами, которые превращают энергию пара в механическую работу в одну или несколько ступеней. Паровая турбина обычно связана с приводной машиной, чаще всего через коробку передач.

Температура пара может достигать 560 °С, а давление находится в пределах от 130 до 240 атм. Повышение эффективности за счет повышения температуры и давления пара является фундаментальным фактором при совершенствовании паровых турбин. Однако высокие температуры и давления повышают требования к смазочным материалам, применяемым для смазки турбин. Изначально турбинные масла изготавливались без присадок и не могли удовлетворить этим требованиям. Поэтому уже около 50 лет в паровых турбинах применяются масла с присадками. Такие турбинные масла содержат ингибиторы окисления и антикоррозийные агенты и при условии соблюдения некоторых специфических правил обеспечивают высокую надежность. Современные турбинные масла также содержат небольшое количество противозадирных и противоизносных присадок, которые защищают смазываемые узлы от износа. Паровые турбины применяются на электростанциях для привода электрогенераторов. На обычных электростанциях их выходная мощность составляет 700—1000 МВт, тогда как на атомных электростанциях эта цифра составляет около 1300 МВт.


2. Требования к турбинным маслам — характеристики

Требования к турбинным маслам определяются собственно турбинами и специфическими условиями их эксплуатации. Масло в системах смазки и управления паровых и газовых турбин должно выполнять следующие функции:
. гидродинамической смазки всех подшипников и коробок передач;
. рассеивания тепла;
. функциональной жидкости для контуров управления и безопасности;
. предупреждения возникновения трения и износа ножек зубьев в коробках передач турбин при ударных ритмах работы турбин.
Наряду с этими механико-динамическими требованиями турбинные масла должны обладать следующими физико-химическими характеристиками:
. стойкостью к старению при длительной эксплуатации;
. гидролитической стабильностью (особенно если применяются присадки);
. антикоррозийными свойствами даже в присутствии воды/пара, конденсата;
. надежным водоотделением (паров и выделением конденсированной воды);
. быстрым деаэрированием — низким вспениванием;
. хорошей фильтруемостью и высокой степенью чистоты.

Только тщательно подобранные базовые масла, содержащие специальные присадки, могут удовлетворять этим строгим требованиям к смазочным материалам для паровых и газовых турбин.

3. Композиции турбинных масел

Современные смазочные материалы для турбин содержат специальные парафиновые масла с хорошими вязкостно-температурными характеристиками, а также антиоксиданты и ингибиторы коррозии. Если турбины с зубчатыми коробками передач нуждаются в высокой степени несущей способности (например: ступень отказа при испытании на шестереночном стенде FZG не ниже 8 DIN 51 354-2, то в масло вводят противозадирные присадки.
В настоящее время турбинные базовые масла получают исключительно экстракцией и гидрированием. Такие операции, как очистка и последующая гидроочистка под высоким давлением, в значительной степени определяют и влияют на такие характеристики, как окислительная стабильность, водоотделение, деаэрация и ценообразование. Это особенно справедливо в отношении водоотделения и деаэрации, так как эти свойства не могут быть существенно улучшены с помощью присадок. Турбинные масла, как правило, получают из специальных парафиновых фракций базовых масел.
В турбинные масла для улучшения их окислительной стабильности вводят фенольные антиоксиданты в сочетании с аминными антиоксидантами. Для улучшения антикоррозийных свойств применяют неэмульгируемые антикоррозийные агенты и пассиваторы цветных металлов. Загрязнения водой или водяным паром не оказывают вредного влияния, так как эти вещества остаются во взвешенном состоянии. При применении стандартных турбинных масел в турбинах с зубчатой коробкой передач в масла вводят небольшие концентрации термически стойких и стойких к окислению противозадирных/противоизносных присадок с длительным сроком службы (фосфорорганические и/или сернистые соединения). Кроме того, в турбинных маслах применяют не содержащие силиконов антипенные и депрессорные присадки.
Следует обратить пристальное внимание на полное исключение силиконов в антипенной присадке. Кроме того, эти присадки не должны отрицательно влиять на деаэрационные характеристики (очень чувствительные) масла. Присадки не должны содержать золы (например, не содержать цинка). Чистота турбинного масла в резервуарах в соответствии с ISO 4406 должна быть в пределах 15/12. Необходимо полностью исключить контакты турбинного масла и различных контуров, проводов, кабелей, изоляционных материалов, содержащих силиконы (строго соблюдать при производстве и применении).

4. Турбинные смазочные материалы

Для газовых и паровых турбин обычно в качестве смазочных материалов применяются специальные парафиновые минеральные масла. Они служат для защиты подшипников вала турбины и генератора, а также коробки передач в соответствующих конструкциях. Эти масла также могут применяться в качестве гидравлической жидкости в системах управления и безопасности. В гидравлических системах, эксплуатируемых под давлением около 40 атм (если имеются раздельные контуры для смазочного масла и масла для регулирования, так называемые спиральные контурные системы) обычно применяются огнестойкие синтетические жидкости типа HDF-R . В 2001 г. был пересмотрен DIN 51 515 под названием «Смазочные и управляющие жидкости для турбин» (часть 1-L-TD официальный сервис, спецификации), а новые так называемые высокотемпературные турбинные масла описаны в DIN 1515, часть 2 (часть 2-L-TG смазочные материалы и управляющие жидкости для турбин — для высокотемпературных условий эксплуатации, спецификации). Следующий стандарт — ISO 6743, часть 5, семейство Т (турбины), классификация турбинных масел; последний вариант стандарта DIN 51 515, опубликованный в 2001/2004 гг., содержит классификацию турбинных масел, которая приведена в табл. 1.

Таблица 1. DIN 51515 классификация турбинных масел. Проект 1999
Характеристика Нормальные турбинные масла, турбинные масла для паровых турбин
DIN 51 515-1 DIN 51 515-2
С противозадирными присадками DIN 51 515-1 DIN 51 515-2
FZG Приложение А Приложение А

Требования, выдвигаемые в DIN 51 515-1 — масла для паровых турбин и DIN 51 515-2 — высокотемпературные турбинные масла, приведены в табл. 2 и 3.

Таблица 2. Требования к маслам для паровых турбин. D1N 51 515. Часть 1, июнь 2001 г. — LTD для нормальных условий эксплуатации
Испытания Предельные значения Сопоставимы с ISO * стандартами
Группа смазочных масел TD 32 TD 46 TD 68 TD 100
Класс вязкости по ISO 1) ISO VG 32 ISO VG 46 ISO VG 68 ISO VG 100 DIN 51 519 ISO 3448
Кинематическая вязкость: при 40 °С DIN 51 562-1 или DIN 51 562-2 или DIN EN ISO 3104 ISO 3104
минимальная, мм 2 /с 28,8 41,4 61,2 90,0 110
максимальная, мм2/с 35,2 50,6 74,8 110
Температура вспышки, минимальная, °С 160 185 205 215 DIN ISO 2592 ISO 2592
Деаэрационные свойства 4) при 50 °С максимальные, мин. 5 5 6 Не нормируется DIN 51 381
Плотность при 15 °С, максимальная, г/мл DIN 51 757 или DIN EN ISO 3675
≤-6 ≤-6 ≤-6 ≤-6 DIN ISO 3016 ISO 3016
Кислотное число, мг КОН/г

Должно быть указано поставщиком

DIN 51558, часть 1 ISO 6618
Зольность (оксидная зола) %масс.

Должно быть указано поставщиком

DIN EN ISO 6245 ISO 6245
DIN 51 777-1 ISO/D1S 12 937
DIN ISO 5884с DIN ISO 4406 ISO 5884 с ISO 4406
Водоотделение (после обработки паром), максимальное, с 300 300 300 300 4 51 589, часть 1
Медная коррозия, максимальная Коррозионная агрессивность (3 ч при 100 °С)

2-100 A 3

DIN EN ISO 2160 ISO 2160
Защита от коррозии стали, максимальная

Отсутствие ржавчины

DIN 51 585 ISO 7120
Стойкость к окислению (TOST ) 3) Время в часах до достижения дельта NZ 2,0 мг КОН/г 2000 2000 1500 1000 DIN 51 587 ISO 4263
Пена: ISO 6247
Ступень III при 24 °С после 93 °С, максимально, мл
*) Международная организация стандартизации
1) Средняя вязкость при 40 °С в мм 2 /с.


4) Температура испытания составляет 25 °С и должна быть указана поставщиком, если потребителю нужны значения при низких температурах.
Приложение А (нормативное) для турбинных масел с противозадирными присадками. Если поставщик турбинного масла также поставляет набор турбинных зубчатых передач, то масло должно выдерживать минимум восьмую ступень нагрузки по DIN 51 345, часть 1 и часть 2 (FZG ).

Атмосферный воздух поступает в воздухозаборник 1 через систему фильтров и подается на вход многоступенчатого осевого компрессора 2. Компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания 3 , куда через форсунки подается и определенное количество газового топлива. Воздух и топливо перемешиваются и воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины 4. Часть полученной энергии расходуется на сжатие воздуха в компрессоре 2 турбины. Остальная часть работы передаётся на электрический генератор через ось привода 7. Эта работа является полезной работой газовой турбины. Продукты сгорания, которые имеют температуру порядка 500-550 °С, выводятся через выхлопной тракт 5 и диффузор турбины 6, и могут быть далее использованы, например, в теплоутилизаторе, для получения тепловой энергии.

Таблица 3. Требования к высокотемпературным турбинным маслам, DIN 51 515, часть 2, ноябрь 2004 г. L-TG для эксплуатации в условиях высоких температур
Группа смазочных масел

Предельные значения

Испытания в соответствии с 2) Сопоставимы с ISO* стандартами
TG 32 TG 46
Класс вязкости по ISO 1) TSOVC 32 TSOVC 46 DIN 51 519 ISO 3448
Кинематическая вязкость: при 40 °С, DIN 51 550 в соответствии
с DIN 51 561 или DIN 51 562-1
ISO 3104
минимальная, мм 2 /с 28,8 41,4
максимальная, мм 2 /с 35,2 50,6
Температура вспышки (в закрытом тигле), минимальная, °С 160 185 DIN ISO 2592 ISO 2592
Деаэрационные свойства 4) при 50 °С, максимальные, мин. 5 5 DIN 51 381
Плотность при 15 °С, минимальная, г/мл DIN 51 757 ISO 3675
Температура застывания, максимальная, °С DIN ISO 3016 ISO 3016
Кислотное число, мг КОН/г Должно быть указано поставщиком DIN 51 558-1 ISO/DIS 6618
Зола (оксидная зола), %масс. Должно быть указано поставщиком DIN EN 7 ISO 6245
Содержание воды, максимальное, мг/кг

DIN 51 777-1

ISO/DIS 12937
Уровень чистоты, минимальный DIN ISO 5884 с DIN ISO 4406 ISO 5884 с ISO 4406
Пена:
Ступень 1 при 24 °С, максимально, мл
Ступень II при 93 °С, максимально, мл
Ступень III при 24 °С после 93 °С, максимально, м;
Деэмульгируемость, мин Должно быть указано поставщиком DIN 51 599 ASTM-D 1401
Водоотделение (после обработки паром), максимальная, с 300 300 DIN 51 589, часть 1
Медная коррозия, максимальная DIN 51 759 ISO 2160
Защита стали от коррозии.
Коррозионная агрессивность, максимальная
DIN 51 585 ISO/DIS 7120
Стойкость к коррозии 3) DIN 51 587 ISO DIS 4263
Время в часах до достижения дельта NZ 2,0 мг КОН/г ASTM-D 2272
RBOT , мин
Модифицированный RBOT , % времени минуты в немодифицированном методе испытания
* Международная организация стандартизации.
** General Electric рекомендует только 450 мин.
1) Средняя вязкость при 40 °С в мм2/с.
2) Образец масла должен храниться без контакта со светом перед испытанием.
3) Испытание на стойкость к окислению должно проводиться по типовой методике, в связи с продолжительностью испытания.
4) Температура испытания составляет 25 °С и должна быть указана поставщиком, если потребителю нужны значения при низких температурах
Приложение А (нормативное для турбинных масел с противозадирными присадками). Если поставщик турбинного масла также поставляет набор турбинных зубчатых передач, то масло должно выдерживать минимум восьмую ступень нагрузки по DIN51 345, часть 1 и часть 2 (FZG ).

ISO 6743-5 классифицирует турбинные масла по их назначению (для паровых или газовых турбин) и по содержанию противозадирных агентов (табл. 4).

Таблица 4. ISO 6743-5 Классификация турбинных смазочных масел в сочетании с ISO/CD 8068
Характеристика Нормальные турбинные масла Высокотемпературные турбинные масла
Без противозадирных присадок ISO-L-TSA (пар)
ISO-L-TG 4(Tia )
ISO-L-TGB (газ)
ISO-L-TGSB (= TGA + TGB качество)
С противозадирными присадками FZG ступень нагрузки не меньше 8 ISO-L-TSE (пар)
ISO-L-TGE (газ)
ISO-L-TGF
ISO-L-TGSE

Спецификация согласно ISO 6743-5 и в соответствии с ISO CD 8086 «Смазочные материалы. Индустриальные масла и родственные им продукты (класс L )— Семейство T (турбинные масла), ISO-L-Т все еще находится в стадии рассмотрения» (2003).
Синтетические жидкости типа ПАО и сложные эфиры фосфорной кислоты также описаны в ISO CD 8068 2003 г. (см. табл. 5).

Таблица 5. Классификация смазочных масел дли турбин, ISO 6743-5 в сочетании с ISO/CD 8068
Общее назначение Состав и свойства Символ ISO-L Типичное применение
1) Паровые турбины непосредственно соединенные, или с зубчатыми передачами для нагрузки в нормальных условиях
2) Базовые турбины непосредственно соединенные, или с зубчатыми передачами пля нагрузки, в нормальных условиях
Очищенные минеральные масла с соответствующими антиоксидантами и ингибиторами коррозии TSA TGA Генерирование электроэнергии и индустриальные приводы и их соответствующие системы управления, судовые приводы, их улучшенная несущая способность не требуется для зубчатого зацепления
3) Паровые турбины, непосредственно соединенные или с зубчатыми передачами для нагрузки, высокая несущая способность
4) Газовые турбины, непосредственно соединенные или с зубчатыми передачами для нагрузки, высокая несущая способность
Очищенные минеральные масла с соответствующими антиоксидантами и ингибиторами коррозии, с дополнительными противозадирными характеристиками для смазки зубчатых передач TSF

TGF

Генерирование электроэнергии и индустриальные приводы и их соответствующие системы управления, где для зубчатых передач требуется улучшенная несущая способность
5) Газовые турбины, непосредственно связанные или с зубчатыми передачами для нагрузки, более высокая несущая способность Очищенные минеральные масла с соответствующими антиоксидантами и ингибиторами коррозии — для более высоких температур TGB
TGSB
(= TSA + TGB)
Генерирование электроэнергии и и индустриальные приводы и их соответствующие системы управления, где требуется высокотемпературная стойкость из-за высоких температур на отдельных участках
6) Прочие смазочные материалы (в соответствии с ISO 6749-5 и ISO/CD 8068)
а) TSC — синтетические жидкости для турбин без специфических огнестойких свойств (например, ПАО);
б) TSD — синтетические жидкости для паровых турбин на базе сложных эфиров фосфорной кислоты с огнестойкими свойствами (сложный эфир алкилфосфата);
в) TGC — синтетические жидкости для газовых турбин без специфических огнестойких свойств (например, ПАО);
г) TGD — синтетические жидкости для газовых турбин на базе сложных эфиров фосфорной кислоты с огнестойкими свойствами (сложный эфир алкилфосфата);
д) TCD — синтетические жидкости систем управления на базе сложных эфиров фосфорной кислоты с огнестойкими свойствами

Таблица 6. Основные требования к турбинным маслам со стороны ведущих мировых производителей.
Характеристики Siemens TLV 901304 Масла для паровых и газовых турбин 1) General Electric GEK 101 941А Масла для газовых турбин с противозадирными/ противоизносными присадками с температурами выше 260 °С 2) General ElectricGEK 32568 Е . Масла для газовых турбин с температурой подшипников выше 260 °С 3) Alstom HTGD 90717 Масла для паровых и газовых турбин с и без противозадирных и противоизносных присадок ISO VG 32/46 4) Alstom HTGD 90117 Масла для паровых и газовых турбин с и без противозадирных и противоизносных присадок ISO VG 68 4) Испытание
по DIN ISO
Испытание по ASTM
Кинематическая вязкость при 40 °С, мм 2 /с ISO VG VG 32: ±10% VG 46:±10% 28,8-35,2
28,8-35,2
VG 32: +10%
VG 46: +10%
VG 68: ±10% DIN 51 562-1 ASTM-D 445
Плотность (API °) 29-33.5 29-33.5 ASTM-D 287
Деаэрационные свойства при 50 °С, мин ≤4 5 (максим) 5 (максим)я <4 <7 DIN 51 381 ASTM-D 3427
Кислотное число, мгКОН/г DIN 51 558-1 ASTM-D 974
без ЕР/АW присадок ≤0,2 0,2 (максим) 0,2 (максим) 0,2 (максим) 0,2 (максим)
с ЕР/AW присадками ≤0,3 0,3 (максим) 0,3 (максим)
Содержание воды, мг/кг ≤ 100 DIN 51777-1 ASTM-D 892
Водоотделение, с < 300 ≤ 300 ≤ 300 DlN 51 589-1
Деэмульгируемость, минуты ≤20 <30 ≤30 DIN 51 599 ASTM-D 1401
Плотность при 15 °С, кг/м 3 ≤900 ХХО ≤900 DIN 51 757 ASTM-D 1298
Температура вспышки DIN ISO 2592 ASTM-D 92
ISO VG 32, °С > 160 215(миним) 215(миним) VG 32 и 46 ≥200 VG 68: ≥ 205
ISO VG 46, °С > 185
Температура застывания, °С <-6 -12(максим) -12 (максим) <-9 <-6 ISO 3016 ASTM-D 97
Распределение частиц {ISO класс) ≤ 17/14 18/15 18/15 ISO 4406
Цвет ≤ 2 2,0 (максим) 2,0 (максим) DIN ISO 2049 ASTM-D 1500
Медная коррозия. Коррозионная агрессивность < 2-100 A3 1 В (максим) 1 В (максим) ≤ 2-100 A3 < 2-100 A3 DIN EN ISO 2160
Защита стали от коррозии, Коррозионная агрессивность 0-В 0-В 0-В 0-В DIN 51 585 ASTM-D 665
Стойкость к старению ≤ 2,0 ≤ 2,0 ≤ 2,0 1 1 DIN 51 587 ASTM-D 943
Увеличение кислотности в мг КОН/гр после 1 ч испытаний по методу TOST (после 2500 ч) (после 2500 ч) (после 3000 ч) (после 2000 ч) * (после 2000 ч) *
Дополнительные требования к турбинным маслам для применения в коробках передач, метод FZG:A /8.3/90 ступень отказа ≥8 ≥8 8 8 DIN 51 354 ASTM-D 1947
Коксуемость по Рэмсботтому, % 0,1% (максима) (или эквив) 0,1% (максима) (или эквив) ASTM-D 524
Стойкость к окислению во вращающейся бомбе, мин 500 (миним) 500 (миним) > 300 (миним) > 300 (миним) ASTM-D 2272
Стойкость к окислению во вращающейся бомбе (модифицированной RBOT c N 2 продувкой 85% (миним) 85% (миним) ASTM-D 2272
Индекс вязкости (ИВ) 95 (минима 95 (миним) ≥90 ≥90 ASTM-D 2270
Атомно-эмиссионная спектроскопия <5 ppm <5 ppm <5 ppm ASTM-D 4951
Содержание цинка Ступень I, минимум 93%
Фильтруемость Ступень I, минимум 93% ISO 13 357-2
* Кислотное число < 1,8 мг КОН/г; шлам < 0,4% по DP 7624.
Базовые масла:
1) Минеральные масла или синтетические масла с присадками для повышения антикоррозионных свойств и стойкости к старению (дополнительно ЕР/А W присадки в случае смазки коробки передач).
2) Нефтяное смазочное масло — синтетические углеводороды с большей высокотемпературной окислительной стабильностью и R&O ингибитор EP/AW присадки.
3) Нефтяное смазочное масло — синтетические углеводороды с большей высокотемпературной окислительной стабильностью и R&O ингибиторами
4) Очищенное минеральное масло: с присадками — в основном ингибиторами старения и коррозии (без ЕР/AW присадок)
Прочие важные спецификации (примеры):
Westinghouse I.L. 1250-5312 — Паровые турбины
21 T 059I — Газовые турбины
Solar ES 9-224 — Газовые турбины
5) L.S . ступень нагрузки.

5. Контуры циркуляции турбинных масел

Для смазки турбин на электростанциях особенно важную роль играют контуры циркуляции масла. Паровые турбины обычно снабжены контурами циркуляции масла под давлением и контурами регулирования, а также раздельными емкостями для контура смазочного масла и масла контура регулирования.
В нормальных условиях эксплуатации основной масляный насос с приводом от турбинного вала всасывает масло из емкости и нагнетает в контуры регулирования и смазки подшипников. Контуры давления и регулирования обычно находятся под давлением в пределах 10—40 атм (давление главного турбинного вала может достигать 100—200 атм). Величина температуры в масляной емкости находится в пределах от 40 до 60 °С. Скорость подачи масла в контуры питания составляет от 1,5 до 4,5 м/сек (около 0,5 м/сек в возвратном контуре). Охлажденное и прошедшее через редукционные клапаны масло поступает в подшипники турбины, генератора и, возможно, коробки передач под давлением 1—3 атм. Индивидуальные масла возвращаются в масляный бак под давлением, равным атмосферному. В большинстве случаев подшипники вала турбины и генератора имеют вкладыши из белого металла. Аксиальные нагрузки обычно поглощаются подшипниками. Контур смазочного масла газовой турбины в основном подобен контуру паровой турбины. Однако в газовых турбинах иногда применяют подшипники качения и подшипники скольжения.
Крупные масляные контуры снабжены центробежными фильтрационными системами. Эти системы обеспечивают удаление мельчайших частиц загрязнителей вместе с продуктами старения и шламом. В зависимости от размера турбины в переточных системах масло пропускают через фильтры каждые пять часов с помощью специальных насосов. Масло выводится из самой нижней точки масляной емкости и подвергается фильтрации непосредственно перед возвращением обратно. Если масло отбирают из основного потока, то скорость потока должна быть снижена до 2—3% от производительности основного насоса. Часто применяют следующие виды оборудования: масляные центрифуги, бумажные фильтры, целлюлозные картриджные фильтры тонкой очистки и фильтрующие установки с сепараторами. Рекомендуется также использование магнитного фильтра. Иногда фильтры байпасного и основного потока снабжаются охлаждающими устройствами для снижения температуры фильтруемого масла. Если существует вероятность попадания в систему воды, пара или других загрязнителей, то должна быть предусмотрена возможность удаления масла из емкости с помощью мобильного фильтра или центрифуги. Для этого в нижней части емкости необходимо предусмотреть специальный соединительный патрубок, который также может быть использован для отбора проб масла.
Старение масла также зависит от того, как и с какой скоростью масло прокачивают через контур. В случае если масло прокачивается слишком быстро, то избыточный воздух диспергируется или растворяется (проблема: кавитация в подшипниках, преждевременное старение и т. д.). Также может иметь место вспенивание масла в масляной емкости, но эта пена обычно быстро разрушается. Положительно влиять на деаэрацию и вспенивание в масляной емкости можно с помощью различных инженерных мер. К таким мерам относятся масляные емкости с большей площадью поверхности и возвратные контуры с трубами большего сечения. Простые меры, например возвращение масла в емкость через перевернутую U-образную трубу, тоже положительно влияют на деаэрационную способность масла и дают хороший эффект. Установка дросселя в емкости также дает положительные результаты. Эти меры продлевают интервал времени, за который вода и твердые загрязнители могут быть удалены из масла.

6. Контуры для промывочного турбинного масла

Все маслопроводы перед вводом в эксплуатацию должны быть механически очищены и промыты. Следует удалять из системы даже такие загрязнители, как чистящие средства и агенты, предотвращающие коррозию (масла/пластичные смазки). Затем необходимо ввести масло с целью промывки. Для промывки требуется около 60-70% от общего объема масла. Промывочный насос должен работать на полную мощность. Подшипник рекомендуется удалять и временно заменять чистым (во избежание попадания загрязнителей в зазор между валом и вкладышами подшипников). Масло следует неоднократно подогревать до температуры 70 °С, а затем охлаждать до 30 °С. Расширение и сужение в трубопроводе и фитингах рассчитаны на удаление грязи в контуре. Вкладыши подшипников вала должны промываться последовательно для поддержания высокой скорости работы. После 24-часовой промывки масляные фильтры, масляные сита и сита масла для подшипников могут быть установлены. Мобильные фильтровальные установки, которые также могут быть использованы, должны иметь размер ячеек не больше 5 мкм. Все части цепи снабжения маслом, включая запасное оборудование, должны быть тщательно промыты. Все узлы и детали системы должны быть очищены снаружи. Затем промывочное масло сливают из масляного бака и холодильников. Возможно и вторичное его использование, но только после очень тонкой фильтрации (байпасная фильтрация). Кроме того, масло должно быть предварительно подвергнуто тщательному анализу на предмет соответствия требованиям спецификации DIN 51 515 или специальных спецификаций на оборудование. Промывку следует производить до тех пор, пока на фильтре не будут обнаружены твердые загрязнители и/или не будет зарегистрировано поддающееся измерению повышение давления в байпасных фильтрах после 24 ч. Рекомендуется проводить промывку в течение нескольких дней, а также анализ масла после любых модификаций или ремонтных работ.

7. Мониторинг и техническое обслуживание турбинных масел

В нормальных условиях вполне достаточно производить мониторинг масла с интервалом в 1 год. Как правило, эта процедура осуществляется в лабораториях производителя. Кроме того, необходима еженедельная визуальная проверка для своевременного обнаружения и удаления загрязняющих масло примесей. Наиболее надежным методом является фильтрование масла с помощью центрифуги в байпасном контуре. При эксплуатации турбины следует учитывать загрязнение окружающего турбину воздуха газами и другими частицами. Такой метод, как подпитка утраченного масла (освежение уровней содержания присадок), заслуживает внимания. Фильтры, сита, а также такие параметры, как температура и уровень масла, должны проверяться регулярно. В случае продолжительного простоя (более двух месяцев) масло следует ежедневно рециркулировать, а также регулярно проверять содержание воды в нем. Контроль отработанных:
. огнестойких жидкостей в турбинах;
. отработанных смазочных масел в турбинах;
. отработанных масел в турбинах.
осуществляют в лаборатории поставщика масла. В VGB Kraftwerktechnic Merkbl tter , Германия (VGB — ассоциация германских электростанций) описан анализ, а также требуемые значения различных свойств.

8. Срок службы масел для паровых турбин

Обычный срок службы паровых турбин составляет 100 000 ч. Однако уровень антиоксиданта снижается до 20-40% от уровня в свежем масле (окисление, старение). Срок жизни турбины в значительной степени зависит от качества турбинного базового масла, условий эксплуатации — температуры и давления, скоости циркуляции масла, фильтрации и качества технического обслуживания и, наконец, от количеств подпитанного свежего масла (это помогает поддерживать адекватные уровни присадок). Температура масла в турбине зависит от нагрузки на подшипники, размеров подшипников и скорости течения масла. Радиационная теплота может также быть важным параметром. Фактор циркуляции масла, т. е. отношение между объемом потока h -1 и объемом емкости с маслом, должен быть в пределах от 8 до 12 ч -1 . Такой относительно низкий фактор циркуляции масла обеспечивает эффективное разделение газообразных, жидких и твердых загрязнителей, тогда как воздух и другие газы могут быть выпущены в атмосферу. Кроме того, низкие факторы циркуляции снижают термические нагрузки на масло (в минеральных маслах скорость окисления увеличивается вдвое при повышении температуры на 8-10 К). Во время эксплуатации турбинные масла подвергаются значительному обогащению кислородом. Турбинные смазочные материалы испытывают воздействие воздуха в ряде точек вокруг турбины. Температуры подшипников могут контролироваться с помощью термоэлементов. Они очень высоки и могут достигать 100 °С, а в смазочном зазоре даже выше. Температура подшипников может достигать 200 °С при локальном перегреве. Такие условия могут встречаться только в больших объемах масла и при высокой скорости циркуляции. Температура масла, сливаемого с подшипников скольжения, обычно находится в пределах 70-75 °С, а температура масла в баке может достигать 60—65 °С в зависимости от фактора циркуляции масла. Масло остается в баке в течение 5—8 мин. За это время воздух, увлеченный потоком масла, деаэрируется, твердые загрязнители выпадают в осадок и их выделяют. Если температура в баке выше, то компоненты присадок с более высоким давлением насыщенных паров могут испариться. Проблема испарения усложняется при установке устройств экстракции паров. Максимальная температура подшипников скольжения ограничивается пороговыми температурами вкладышей подшипников из белого металла. Эти температуры составляют около 120 °С. В настоящее время разрабатывают вкладыши подшипников из металлов, менее чувствительных к высоким температурам.

9. Масла для газовых турбин — применение и требования

Газотурбинные масла применяются в стационарных турбинах, используемых для выработки электроэнергии или тепловой энергии. Компрессорные воздуховки нагнетают давление газа, который подается в камеры сгорания, до 30 атм. Температуры сгорания зависят от типа турбины и могут достигать 1000 °С (обычно 800—900 °С). Температуры выхлопных газов обычно колеблются около 400—500 °С. Газовые турбины с мощностью до 250 МВт применяются в городских и пригородных системах парового отопления, в бумагоделательной и химической промышленности. Преимущества газовых турбин заключаются в их компактности, быстроте запуска (<10 минут), атакже в малом расходе масла и воды. Масла для паровых турбин на базе минеральных масел применяются для обычных газовых турбин. Однако следует помнить о том, что температура некоторых подшипников в газовых турбинах выше, чем в паровых турбинах, поэтому возможно преждевременное старение масла. Кроме того, вокруг некоторых подшипников могут образовываться «горячие участки», где локальные температуры достигают 200—280 °С, при этом температура масла в баке сохраняется на уровне порядка 70—90 °С (горячий воздух и горячие газы могут ускорить процесс старения масла). Температура масла, поступающего в подшипник, чаще всего бывает в пределах 50— 55 °С, а температура на выходе из подшипника достигает 70—75 °С. В связи с тем, что объем газотурбинных масел обычно меньше, чем объем масел в паровых турбинах, а скорость циркуляции выше, их срок службы несколько короче. Объем масла для электрогенератора мощностью 40—60 МВт («General Electric» ) составляет приблизительно 600-700 л, а срок службы масла — 20 000-30 000 ч. Для этих областей применения рекомендуются полусинтетические турбинные масла (специально гидроочищенные базовые масла) — так называемые масла группы III — или полностью синтетические масла на базе синтетических ПАО. В гражданской и военной авиации газовые турбины применяются в качестве тяговых двигателей. Так как в этих турбинах температура очень высокая, для их смазки применяют специальные маловязкие (ISO VG 10, 22) синтетические масла на базе насыщенных сложных эфиров (например, масла на базе сложных эфиров полиолов). Эти синтетические сложные эфиры, применяемые для смазки авиационных двигателей или турбин, имеют высокий индекс вязкости, хорошую термическую стойкость, окислительную стабильность и превосходные низкотемпературные характеристики. Некоторые из этих масел содержат присадки. Их температура застывания находится в пределах от —50 до —60 °С. И, наконец, эти масла должны отвечать всем требованиям военных и гражданских спецификаций на масла для авиационных двигателей. Смазочные масла для турбин самолетов в некоторых случаях могут также применяться для смазки вертолетных, судовых, стационарных и индустриальных турбин. Применяются также авиационные турбинные масла, содержащие специальные нафтеновые базовые масла (ISO VG 15-32) с хорошими низкотемпературными характеристиками.

10. Огнестойкие жидкости, не содержащие воды, применяемые на электростанциях

В целях безопасности в контурах регулирования и управления, подверженных опасностям возгорания и пожаров, применяются огнестойкие жидкости. Например, на электростанциях это относится к гидравлическим системам в высокотемпературных зонах, в частности вблизи перегретых паровых труб. Огнестойкие жидкости, применяемые на электростанциях, как правило, не содержат воды; это синтетические жидкости на базе сложных эфиров фосфорной кислоты (типа DFD-R по DIN 51 502 или ISO VG 6743-0, ISO VG 32-68). Эти HFD жидкости обладают следующими особенностями. Спецификации турбинных жидкостей на базе сложных триарилфосфатов описаны в ISO/DIS 10 050 — категория ISO-L-TCD . Согласно им такие жидкости должны обладать:
. огнестойкостью;
. температурой самовозгорания выше 500 "С;
. стойкостью к самоокислению при поверхностных температурах вплоть до 300 °C;
. хорошими смазочными свойствами;
. хорошей защитой от коррозии и износа;
. хорошей стойкостью к старению;
. хорошей деэмульгируемостью;
. низкой вспениваемостью;
. хорошими деаэрационными характеристиками и низким давлением насыщенных паров.
Для улучшения окислительной стабильности иногда применяют присадки (возможно, ингибиторы пенообразования), а также ингибиторы ржавления и коррозии. В соответствии с 7-м Люксембургским докладом (The 7th Luxembourg Report ) максимально допустимая температура HFD жидкостей в гидродинамических системах составляет 150 °С, а постоянные температуры жидкостей не должны превышать 50°C. Эти синтетические жидкости на базе сложных эфиров фосфорной кислоты обычно применяются в контурах управления, но в некоторых особых случаях они также применяются и для смазки подшипников качения в турбинах (а также в других гидравлических системах паровых и газовых турбин). Однако системы должны быть сконструированы с учетом того, что будут использоваться именно эти жидкости (HFD — совместимые эластомеры, окраска и покрытия). В стандарте (E)DIN 51 518 перечислены минимальные требования к жидкостям для систем управления электростанций. Дополнительную информацию можно почерпнуть в инструкциях и спецификациях, связанных с огнестойкими жидкостями, например в VDMA лист 24317 и в СЕТОР рекомендациях R 39 Н и R 97 H . Информация, связанная с заменой одной жидкости на другую, содержится в VDMA лист 24314 и СЕТОР Rp 86 H.

11. Смазка гидротурбин и гидроэлектростанций

Персонал гидроэлектростанций должен обращать особое внимание на использование водозагрязняющих веществ, таких как смазочные материалы. На ГЭС используются масла как с присадками, так и без них. Они применяются для смазки подшипников и коробок передач на главном и вспомогательном оборудовании, а также средств регулирования и управления. При выборе смазочных материалов следует учитывать специфические условия эксплуатации на гидростанциях. Масла должны обладать хорошими водовыделяющими и деаэрационными свойствами, низкой вспениваемостью, хорошими антикоррозионными свойствами, высокими противоизносными свойствами (FZG ступень нагрузки в коробках передач), хорошей стойкостью к старению и совместимостью со стандартными эластомерами. В связи с тем, что отсутствуют установленные стандарты на масла для гидротурбин, основные требования к ним совпадают со спецификациями на общие турбинные масла. Вязкость масел для гидротурбин зависит от типа и конструкции турбины, а также от рабочей температуры, и может находиться в пределах от 46 до 460 мм 2 /с (при 40 °С). Для таких турбин применяют смазочные масла и масла для системы управления типа TD и LTD по DIN 51 515. В большинстве случаев одно и то же масло может применяться для смазки подшипников, коробок передач и систем управления. Обычно вязкость таких турбиных масел и масел для подшипников находится в пределах от 68 до 100 мм 2 /сек. При запуске турбин температура масел, используемых в системах управления, не должна опускаться ниже 5 °С, а температура масел для смазки подшипников не должна быть ниже 10 °С. Если оборудование находится в холодных окружающих условиях, настоятельно рекомендуется установка подогревателей масла. Масла для гидротурбин не испытывают сильных термических нагрузок, а их объемы в резервуарах довольно высоки. В связи с этим срок службы турбинных масел довольно велик. На гидроэлектростанциях интервалы отбора масел для анализа могут быть соответственно удлинены. Особенное внимание следует обращать на уплотнение контуров циркуляции турбинных смазочных масел для исключения попадания воды в систему. В последние годы успешно применяются биологически разлагаемые турбинные масла на базе насыщенных сложных эфиров. По сравнению с минеральными маслами эти продукты легче поддаются биологическому разложению и относятся к более низкой категории загрязнителей воды. Кроме того, гидравлические масла типа HLP46 (с присадками, не содержащими цинка), быстро биологически разлагаемые жидкости типа HEES 46 и пластичные смазки NLGI сорта 2 и 3 применяются на гидроэлектростанциях.

Роман Маслов.
По материалам зарубежных изданий.

Экология/4. Промышленная экология и медицина труда

Ермолаева Н.В., д.т.н. Голубков Ю.В., асп. Аунг Кхаинг Пью

Московский Государственный технологический университет «Станкин»

Минимизация воздействия масляных смазочно-охлаждающих жидкостей на здоровье человека

Угроза здоровью человека и его благосостоянию, связанная с загрязнением окружающей среды, является в настоящее время одной из самых актуальных проблем. По данным Всемирной Организации Здравоохранения, загрязнение окружающей среды обуславливает во всем мире примерно 25% всех болезней, при этом на долю детей приходится более 60% заболеваний, вызванных этой причиной .

Смазочно-охлаждающие технологические средства (СОТС), подав­ляющее большинство которых составляют смазочно-охлаждающие жидко­сти (СОЖ), являются неотъемлемым элементом технологических процес­сов современных металлообрабатывающих производств. К СОЖ на масляной основе предъявляется ряд требований . В частности, они не должны вызывать выраженного биологического действия на кожу и органы дыхания работника, при воздействии на слизистые оболочки оказывать минимальный раздражающий эффект, обладать низкой способностью к образованию масляного тумана, не содержать 3,4-бензпирен и некоторые другие опасные вещества.

Основным фактором риска для здоровья работающих с масляными СОЖ является поступление в дыхательные пути аэрозоля масла, формальдегида, акролеина и других продуктов термоокислительной деструкции. Установлено, что даже при соблюдении ПДК в рабочей зоне по акролеину, бензолу, формальдегиду, 3,4-бензпирену, ацетальдегиду, индивидуальный пожизненный канцерогенный риск при двадцатилетнем производственном стажеможет достигать 9* 10 -3 , а при тридцатилетнем стаже – 1,3* 10 -2 , что значительно выше приемлемого (1* 10 -3 ) для профессиональных групп . Несмотря на то, что практически для всех компонентов, входящих в состав СОЖ и продуктов их термоокислительной деструкции, имеются ПДК, СОЖ,являясь сложными смесями, способны оказывать неблагоприятное воздействие на здоровье человека. Поскольку на основе теоретического анализа это воздействие достоверно прогнозировать затруднительно, обязательным этапом определения степени опасности СОЖ является их токсикологическая оценка, при которой определяется LD 50 , LC 50 , способность раздражать кожу и слизистые, сенсибилизирующие и мутагенные свойства, класс опасности.

Чаще всего масляные СОЖ изготавливают на основе индустриаль­ ных масел. Поэтому п редставляет значительный интерес определение молекулярного состава индустриальных масел с целью нахождения отдельных соединений – потенциальных загрязнителей окружающей среды. Такие данные необходимы для разработки и принятия мер по реализации активных методов защиты персонала и окружающей среды от вредных компонентов масляных СОЖ.

В данной работе нами хромато-масс-спектрометрическим методом исследован молекулярный состав некоторых марок масляных СОЖ (МР-3, МР-3К, СП-4) и индустриального масла (И-40А). В результате проведенных исследований установлено, что наиболее вредными для человека и окружающей среды веществами в СОЖ марки МР-3 являются гомологи бензола – этилбензол и м-ксилол, присутствующие в количестве от 2,4 до 3,3 нг/г. Также установлено, что в СОЖ марки МР-3К присутствуют полициклические ароматические углеводороды: 3-метилфенантрен,9- и 2-метилантрацен в количестве от 6,0 до 21,2 нг/г.Показано, что наиболее вредными веществами в СОЖ марки СП-4 являются галогеносодержащие органические соединения, содержащиеся в количестве от 0,3 до 1,0 мкг/г.

Практически все органические вещества представляют опасность для окружающей среды. Наиболее сильными канцерогенами в нефтяных маслах являются ароматические углеводороды (ПДК 0,01..100 мг/м³), олефины (1…10 мг/м³), а также соединения серы, азота и кислорода. В настоящее время трудно выделить самые вредные для окружающей среды вещества, так как многие из них, в том числе и алкилфенолы, имеют структуру, подобную половым гормонам, и ока­зывают влияние на репродуктивное здоровье людей, вызывают рост раковых заболеваний. Например, случайно было открыто канцерогенное действие нонилфенола, ускоряющего развитие раковых клеток .

Одним из принципов научно-учебного комплекса «Инженерная экология, безопасность труда и жизнедеятельности» МГТУ «Станкин» является приоритетность минимизации воздействия на окружающую среду и человека перед управлением этим воздействием. Реализация этого принципа заключается в том, что необходимо уменьшить воздействия на окружающую среду и человека непосредственно в источнике, а не принимать затем меры по управлению этим воздействием посредством строительства очистных сооружений разных типов, утилизации отходов, их нейтрализации и т.п.

Перечислим возможные методы очистки индустриального масла И-40А и упомянутых масляных СОЖ от вредных компонентов. Гидроочистка – наиболее эффективный методудаления сернистых соединенийвсехтипов изнефтепродуктов. Адсорбция на естественных глинах и других адсорбентах - универсальный метод очистки. Эту работу, на наш взгляд, следует проводить на заводе-изготовителе СОЖ.

Литература:

1. Онищенко Г.Г., Зайцева Н.В., Уланова Т.С. Контроль содержания химических соединений и элементов в биологических средах: Руководство. – Пермь: Книжный формат, 2011. – 520 с.

2. Смазочно-охлаждающие технологические средства и их применение при обработке резанием: Справочник / Под общ. ред. Л.В. Худобина.- М.: Машиностроение, 2006. - 544 с.

3. Майстренко В.Н., Клюев Н.А. Эколого-аналитический мониторинг стойких органических загрязнителей. – М.: БИНОМ. Лаборатория знаний, 2004. – 323 с.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника