Углерод в организме человека

Углерод (С) - шестой элемент Периодической системы Д.И. Менделеева. Его содержание в земной коре составляет около 0,16%, то есть он является одним из самых распространенных химических элементов.

Углерод - это базовый биоэлемент. Все вещества, в молекулах которых имеется хотя бы один атом углерода, по определению считаются органическими (исключения составляют только карбиды, угольная кислота, оксиды углерода, цианиды и тиоцианаты).

Углерод уникален тем, что имеет все восемь степеней окисления (от 4 до -4). Правда, имеются другие химические элементы с таким же свойством, например, кремний, но на их основе вряд ли могла зародиться жизнь в привычном нам понимании, поскольку тот же кремний намного тяжелее углерода: оксид углерода при нормальных условиях - довольно легкий газ (немного тяжелее воздуха), оксид кремния - твердое вещество (кварц - почти 100%-ный оксид кремния). Более тяжелые аналоги (германий, олово и свинец) вообще не имеет смысла рассматривать в данном аспекте.

С углеродом человек познакомился очень давно, и вероятнее всего, в форме сажи и основного компонента древесного и каменного угля. Намного позже люди стали использовать такие аллотропные формы углерода, как графит и алмаз. Кстати, только в середине XVIII столетия благодаря французскому химику Лавуазье люди узнали, что алмаз - это углерод.

Благодаря наличию большого количества степеней окисления углерод образует очень большое количество аллотропных форм. Но в природе наиболее распространены только три - сажа, графит и алмаз. С помощью нанотехнологий в лабораторных условиях человек научился получать такие формы углерода, которые в природе сами по себе возникнуть не могут. Причем физические свойства таких форм еще только начали изучаться.

Углерод входит в состав всех соединений, участвующих в построении живых организмов и обеспечении их жизнедеятельности, - белков, жиров, углеводов, витаминов, нуклеиновых кислот, гормонов и т.д. На 21% тело человека состоит из углерода. Если из 100% вычесть 75%, приходящихся на воду, то... комментарии излишни. Наши мышцы на 2/3 состоят из углерода, кости - на 1/3. В кровяном русле человека в форме различных соединений циркулирует около 150 г углерода, а во всех костях его содержится около 280 г.

Наземные растения почти наполовину состоят из углерода.

Углерод входит в состав углекислого газа, который усваивают растения и в результате фотосинтеза превращают сначала в глюкозу, а затем в другие органические вещества. Многие растения без света погибают именно потому, что не могут без него поглощать углекислоту, то есть обречены на углеродное голодание. Ну, а без растений не обходится животный мир, поскольку травоядные представители фауны живут преимущественно за счет органических веществ растений. И так далее по пищевой цепи, вплоть до человека.

Организм животных получает энергию за счет окислительного распада углеродсодержащих соединений и при этом выделяет в окружающую среду углекислый газ.

В организм человека углерод попадает с пищей (приблизительно 300 г в сутки) и с углекислым газом, содержащимся в воздухе (в среднем 3,7 г в сутки).

Углекислый газ (углекислота) - очень стойкое химическое соединение, поэтому реакции с его образованием практически необратимые. Данное свойство находит самое широкое применение. Например, все карбонаты при соединении с кислотами образуют углекислоту, которая при обычных условиях имеет газообразную форму. Поэтому питьевая сода (гидрокарбонат натрия) или мел (карбонат кальция) при внутреннем употреблении нейтрализуют содержащуюся в желудке соляную кислоту, тем самым избавляя человека от изжоги.

В чистом виде углерод совершенно безопасен для человека. Активированный уголь, то есть почти 100%-ный углерод, имеет широкое применение в технике, химии, медицине, поскольку обладает абсорбирующими свойствами.

Токсичными для человека являются некоторые соединения углерода (например, СО - угарный газ, CS 2 - сероуглерод, ССl 4 - четыреххлористый углерод, С 6 Н 6 - бензол, CN- - цианиды и др.).

Углерод.

Биологическое значение.

Все без исключения живые организмы построены из соединений углерода. Особенностью атома углерода является их способность соединяться между собой, образуя сколь угодно длинные цепи, которые могут быть и разветвленными, содержащими миллионы и миллиарды атомов углерода, соединенных с атомами других элементов (самые из известных молекул – это молекулы белков, содержащих до миллиарда углеродных звеньев). Их длина может даже достигать одного метра!

Углерод в организме. Углерод - важнейший биогенный элемент, составляющий основу жизни на Земле, структурная единица огромного числа органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности (биополимеры, а также многочисленные низкомолекулярные биологически активные вещества - витамины, гормоны, медиаторы и другие). Значительная часть необходимой организмам энергии образуется в клетках за счет окисления Углерода. Возникновение жизни на Земле рассматривается в современное науке как сложный процесс эволюции углеродистых соединений.

Уникальная роль Углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один других элемент периодической системы. Между атомами Углерода, а также между Углеродом и другими элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность Углерода образовывать 4 равнозначные валентные связи с других атомами Углерода создает возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - С, О и Н - составляют 98% общей массы живых организмов. Этим достигается определенная экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома Углерода лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).

Согласно общепринятой гипотезе А. И. Опарина, первые органических соединения на Земле имели абиогенное происхождение. Источниками Углерода служили метан (СН4) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического Углерода, за счет которого образуется все органическое вещество биосферы, является оксид углерода (IV) (СО2), находящийся в атмосфере, а также растворенный в природных водах в виде НСО3. Наиболее мощный механизм усвоения (ассимиляции) Углерода (в форме СО2) - фотосинтез - осуществляется повсеместно зелеными растениями (ежегодно ассимилируется около 100 млрд. т СО2). На Земле существует и эволюционно более древний способ усвоения СО2 путем хемосинтеза; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют Углерод с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы. Применение для биосинтеза белка и других питательных веществ микроорганизмов, использующих в качестве единственного источника Углерода углеводороды нефти, - одна из важных современное научно-технических проблем.

Содержание Углерода в живых организмах в расчете на сухое вещество составляет: 34,5-40% у водных растений и животных, 45,4-46,5% у наземных растений и животных и 54% у бактерий. В процессе жизнедеятельности организмов, в основные за счет тканевого дыхания, происходит окислительный распад органических соединений с выделением во внешнюю среду СО2. Углерод выделяется также в составе более сложных конечных продуктов обмена веществ. После гибели животных и растений часть Углерода вновь превращается в СО2 в результате осуществляемых микроорганизмами процессов гниения. Таким образом происходит круговорот Углерода в природе. Значительная часть Углерода минерализуется и образует залежи ископаемого Углерода: каменные угли, нефть, известняки и другие. Помимо основной функции - источника Углерода - СО2, растворенная в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе СаСО3 Углерод образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и других Такие соединения Углерода, как HCN, СО, ССl4, преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.

Помимо стабильных изотопов Углерода, в природе распространен радиоактивный 14С (в организме человека его содержится около 0,1 мккюри). С использованием изотопов Углерода в биологических и медицинских исследованиях связаны многие крупные достижения в изучении обмена веществ и круговорота Углерод в природе. Так, с помощью радиоуглеродной метки была доказана возможность фиксации Н14СО3- растениями и тканями животных, установлена последовательность реакций фотосинтеза, изучен обмен аминокислот, прослежены пути биосинтеза многих биологически активных соединений и т. д. Применение 14С способствовало успехам молекулярной биологии в изучении механизмов биосинтеза белка и передачи наследственной информации. Определение удельной активности 14С в углеродсодержащих органических остатках позволяет судить об их возрасте, что используется в палеонтологии и археологии

Применение

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.

Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого, ограненные алмазы - бриллианты используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, бриллиант неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м·К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области.

В фармакологии и медицине широко используются различные соединения углерода - производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) - для лечения кожных заболеваний; радиоактивные изотопы углерода - для научных исследований (радиоуглеродный анализ).

Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент.

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является СО2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа пожирают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возврашением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ) - один из важнейших источников энергии для человечества. В смеси с техническими маслами в качестве смазочного материала. Из смеси графита с глиной изготавливают плавильные тигли. Графит используют в ядерной промышленности, как поглотитель нейтронов.

Кокс применяют в металлургии, как восстановитель. Древесный уголь – в кузнечных горнах, для получения пороха (75%KNO3 + 13%C + 12%S), для поглощения газов (адсорбция), а также в быту. Сажу применяют, как наполнитель резины, для изготовления черных красок – типографская краска и тушь, а также в сухих гальванических элементах. Стеклоуглерод применяют для изготовления аппаратуры для сильно агрессивных сред, а также в авиации и космонавтике.

Активированный уголь поглощает вредные вещества из газов и жидкостей: им заполняют противогазы, очистительные системы, его применяют в медицине при отравлениях.

краткое содержание других презентаций

«Химический состав и строение клетки» - Мембрана. Рибосомы. Клетка. Жиры. Строение клетки. Химические элементы. Клеточный центр. Нуклеиновые кислоты. Анатомия. Строение и химический состав клетки. Белки. Работа с тетрадью. Основной источник энергии. Науки. Хранение наследственной информации. Световой микроскоп. Химический состав клетки. Митохондрии.

«Органические соединения клетки» - Лизин. Свойства и функции жиров. Органические вещества клетки. Нуклеиновые кислоты. Разнообразие органических веществ. Какие вещества называются органическими. Углеводы. Правила оформления диаграмм. Выигрышный путь. Лабиринт.

«Урок «Химический состав клетки»» - Элементарный состав клетки. Принцип комплементарности. Репликация. Углеводы. Нуклеиновые кислоты. Нуклеотид. Свойства белковой молекулы. РН буферность. Виды РНК. Структура белка. Молекулярный уровень. ДНК – двойная спираль. Ферменты. Липиды. Белки. РНК – одиночная цепочка. Неорганические вещества. Молекула водорода. Химический состав клетки.

«Неорганические вещества в составе клетки» - Мембрана клетки. Неполярные вещества. Неорганические вещества. Формы воды. Хитин. Земля. Вода и её роль в клетке. Химическая организация клетки. Вода. Свойства воды. Химический состав живого вещества. Классификация. Молекулы сахара. Нуклеиновые кислоты. Химические элементы. Целлюлоза. Осмос. Буферные свойства. Неорганические вещества клетки. Химический состав клетки. Уотсон Джеймс Дьюи. Содержание химических элементов.

«Биология «Химический состав клетки»» - Признаки реакции. Различия живой и неживой природы. Кислород. C -основа всех органических веществ. Макроэлементы. План урока. Состав человеческого тела. Цинк. Ультрамикроэлементы. Химический состав клетки. Биогенные элементы. Микроэлементы. Cu -ферменты гемоцианины, синтез гемоглобина, фотосинтез. Ответить на вопросы.

«Неорганические вещества клетки» - Функции воды. Химический состав клетки. Содержание химических соединений в клетке. Микроэлементы. 80 химических элементов. Ультрамикроэлементы. Биогенные элементы. Магний. Содержание в разных клетках. Кислород. Элементы, входящие в состав клетки. Макроэлементы.


Элементы Количество (в %) Элементы Количество (в %)

Кислород 65-75 Кальций 0,04-2,00

Углерод 15-16 Магний 0,02-0,03

Водород 8-10 Натрий 0,02-0,03

Азот 1,5-3,0 Железо 0,01-0,015

Фосфор 0,2-1,0 Цинк 0,0003

Калий 0,15-0,4 Медь 0,0002

Сера 0,15-0,2 Йод 0,0001

Хлор 0,05-0,1 Фтор 0,0001

В таблице приведены данные об атомном составе клеток. Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. Особенно велико содержание в клетке четырех элементов - кислорода, углерода, азота и водорода. В сумме они составляют почти 98% всего содержимого клетки. Следующую группу составляют восемь элементов, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это сера, фосфор, хлор, калий, магний, натрий, кальций, железо. В сумме они составляют 1.9%. Все остальные элементы содержатся в клетке в исключительно малых количествах (меньше 0,01%)

Таким образом, в клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы. На атомном уровне различий между химическим составом органического и не органического мира нет. Различия обнаруживаются на более высоком уровне организации - молекулярном.

Биология опухолевой клетки

Клетка многоклеточного организма может существовать в двух состояниях: нормальном и трансформированном, т.е. опухолевом. Для исследовательских целей во многих случаях более удобна культура опухолевых клеток.

Опухолевая клетка по многим биохимическим признакам отличается от нормальной. Её наиболее характерным отличительным свойством является способность к непрерывному делению, которое не подчиняется регуляторным сигналам организма. В результате деления из одной клетки образуются две, также способные к бесконтрольному делению, т.е. способность к нерегулируемому делению передается по наследству. Увеличение размера опухоли происходит за счет размножения исходной опухолевой клетки, а не превращения новых нормальных клеток в опухолевые. Отсюда следует, что из одной опухолевой клетки в организме может возникнуть опухолевой узел.

Имеются прямые доказательства того, что опухоли человека имеют моноклональное происхождение (клон - некоторое количество клеток, произошедших от одной родительской клетки в результате ее деления).

Помимо способности к бесконтрольному росту еще два свойства опухолей определяют их опасность для жизни организма: способность к инвазии и метастазированию.

Инвазия - явление прорастания опухоли в нормальные ткани, нарушая их питание, функционирование, что приводит их к гибели.

Метастазирование - это способность злокачественной опухоли образовывать опухолевые узлы в отдаленных от первичной опухоли частях организма. Опухолевые клетки, в отличие от нормальных, плохо скреплены между собой. Отрываясь от основного узла, одиночные опухолевые клетки током крови или лимфы разносятся по всему организму. В некоторых органах они могут задержаться и начать делиться, что приведет к образованию новых опухолевых узлов, способных к инвазии, таким образом, даже если опухоль поражен не жизненно важный орган, то и в этом случае способность опухоли к метастазированию делает ее опасной для жизни.

Особый интерес представляет вопрос, может ли идти обратный процесс, т.е. может ли из опухолевой клетки образоваться нормальная? Дать положительный ответ, разумеется, никто не решится, но в то же время имеются данные, свидетельствующие о теоретической возможности перерождения - нормализации опухолевых клеток.

Было отмечено, что при введении некоторых веществ (масляной кислоты, диметилсульфоксида, витамина А и др.) в клеточную культуру опухоли, клетки по некоторым биохимическим признакам становились похожими на нормальные, однако при удалении этих веществ клетки вновь приобретали опухолевые черты.

Беатриса Минц, одна из исследователей рака, пересаживала клетку тератомы - опухоли семенников черной мыши в полость бластулы (этап развития оплодотворенной яйцеклетки) белой мыши. Через положенный срок рождались мышата, которые отличались от контрольных только тем, что они были пестрыми - на белой шкурке были черные полосы. Следовательно, в окружении нормальных клеток опухолевая клетка включилась в процессы развития организма как нормальная клетка.

Наконец, каждый из нас слышал о чудесных случаях исчезновения опухолей и выздоровления больных раком. Анализ историй болезней людей, болевших в стадии, когда медицина была бессильна им помочь и никакого лечения не проводилось, показывает, что очень малая доля больных по совершенно непонятным причинам выздоравливала. Погибали ли опухолевые клетки в организме в результате изменений в функционировании всего организма, превращались ли они в нормальные клетки - совершенно неизвестно.

Итак, рак это с одной стороны генетическое заболевание, когда ломается заранее заданная программа клеточного деления и клетка переходит в режим безостановочного самовоспроизводства, а с другой стороны - иммунное заболевание, поскольку происходит нарушение координации в системе надзора за тем, чтобы клетки, нарушившие закон о строгом выполнении программы развития, уничтожались.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника