Тепловой закон джоуля ленца. Последовательное соединение

Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем .

В словесной формулировке звучит следующим образом

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля

Математически может быть выражен в следующей форме:

где - мощность выделения тепла в единице объёма, - плотность электрического тока, - напряжённость электрического поля , σ - проводимость среды.

Работа и мощность тока. Закон Джоуля-Ленца.

Прохождение электрического тока по проводнику представляет собой процесс упорядоченного движения зарядов в электрическом поле, существующем в проводнике. При этом силы электрического поля, действующие на заряды, совершают работу. Назовем эту работу “работой тока” (Aэл.) и рассчитаем ее на участке цепи 1-2, содержащем сопротивление R (см. рисунок).

Из электростатики известно, что Aэл. = q*(f1 - f2).

В темах 1 и 2 раздела “постоянный ток” показано, что

q = I*t; U = I*R; U = f1 - f2

Следовательно, работу тока можно вычислить с помощью следующего соотношения:

Aэл. = I*U*t = I2*R*t = U2*t/R . (12)

Мощностью (Nэл.) называется работа, совершаемая током за единицу времени:

Следовательно,

Nэл. = I*U = I2*R = U2/R . (13)

Мощность электрического тока на опыте определяется с помощью амперметра и вольтметра или специального прибора – ваттметра.

Закон Джоуля-Ленца

Если по активному сопротивлению (проводнику) течет постоянный ток, то работа тока на этом участке идет на преобразование электрической энергии во внутреннюю. Увеличение внутренней энергии проводника приводит к повышению его температуры (проводник нагревается).

По закону сохранения энергии количество теплоты (Q), выделяющееся в проводнике при прохождении электрического тока, равно работе тока: Q = Aэл.

Следовательно,

Q = I*U*t = I2*R*t = U2*t/R . (14)

Формула (14) есть закон Джоуля-Ленца для однородного участка цепи.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах :

Закон Джоуля Ленца определяет выделенное количество тепла на участке электрической цепи обладающей конечным сопротивлением при прохождении тока через нее. Обязательным условием является тот факт, что на этом участке цепи должны отсутствовать химические превращения.

Возьмём проводник, к концам которого приложено напряжение. Следовательно, через него протекает ток. Таким образом, электростатическое поле и внешние силы совершают работу по перемещению электрического заряда от одного конца проводника к другому.

Если при этом проводник остается неподвижный и внутри него не происходят химические превращения. То вся работа, затрачиваемая внешними силами электростатического поля, идет на увеличение внутренней энергии проводника. То есть на его разогрев.

Q=UIt=I*I*R*t=(U*U/R)*t

Формула 1 - Закон Джоуля-Ленца

Данное соотношение независимо друг от друга получили два ученых. Это были Дж. Джоуль и Э.Х.Ленц. Таким образом, в итоге закон получил название закон Джоуля-Ленца.

Также можно рассматривать не весь проводник целиком, а лишь какой-то его фрагмент. Допустим если взять элементарный объём цилиндрической формы. При этом ось этого цилиндра совпадает с направлением тока. То количество тепла, которое выделяется в единицу времени в этом элементарном объёме, будет называться удельной тепловой мощностью.

W=(d*d*Q)/(dV*dt)

Формула 2 - удельная тепловая мощность

В дифференциальной форме закон Джоуля Ленца будет выглядеть так

Формула 3 - Дифференциальная форма записи Закона Джоуля Ленца

Звучит он, таким образом, удельная мощность тока будет равняться скалярному произведению векторов напряжённости эклектического поля на плотность тока в проводнике.

Также необходимо заметить, что закон Джоуля Ленца в дифференциальной форме может применяться не только к проводникам, но и к полупроводникам, а еще и к электролитам. Еще можно заметить, при этом не важна природа внешних сил, которые вызывают ток.

Примеров использования в повседневной жизни закона Джоуля Ленца можно привести массу. Например, нихромовая спираль в электрическом обогревателе. Также обычная лампочка накаливания. Либо электрическая дуга в электродуговой сварке. Так, казалось бы, на первый взгляд для совершенно несвязанных между собой вещей в основе лежит один и тот же физический процесс.

Математически может быть выражен в следующей форме:

где w - мощность выделения тепла в единице объёма, - плотность электрического тока, - напряжённость электрического поля , σ - проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах :

В математической форме этот закон имеет вид

где dQ - количество теплоты, выделяемое за промежуток времени dt , I - сила тока, R - сопротивление, Q - полное количество теплоты, выделенное за промежуток времени от t 1 до t 2 . В случае постоянных силы тока и сопротивления:

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии , понижая в результате силу тока. Однако, повышение напряжения снижает электробезопасность линий электропередачи .

Для применения высокого напряжения в цепи для сохранения прежней мощности на полезной нагрузке приходится увеличивать сопротивление нагрузки. Подводящие провода и нагрузка соединены последовательно . Сопротивление проводов () можно считать постоянным. А вот сопротивление нагрузки () растёт при выборе более высокого напряжения в сети. Также растёт соотношение сопротивления нагрузки и сопротивления проводов. При последовательном включении сопротивлений (провод - нагрузка - провод) распределение выделяемой мощности () пропорционально сопротивлению подключённых сопротивлений.

Ток в сети для всех сопротивлений постоянен. Следовательно, выполняются соотношение

И для в каждом конкретном случае являются константами. Следовательно, мощность, выделяемая на проводах, обратно пропорциональна сопротивлению нагрузки, то есть уменьшается с ростом напряжения, так как . Откуда следует, что . В каждом конкретном случае величина является константой, следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы . В них используется нагревательный элемент - проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром , константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

См. также

Примечания

Ссылки

  • Эффективная физика. Джоуля-Ленца закон копия из веб-архива
  • http://elib.ispu.ru/library/physics/tom2/2_3.html Закон Джоуля-Ленца
  • http://eltok.edunet.uz/dglens.htm Законы постоянного тока. Закон Джоуля-Ленца
  • http://slovari.yandex.ru/dict/bse/article/00023/23600.htm БСЭ. Джоуля-Ленца закон
  • http://e-science.ru/physics/theory/?t=27 Закон Джоуля-Ленца

Wikimedia Foundation . 2010 .

§ 24. ЗАКОН ЛЕНЦА-ДЖОУЛЯ

При прохождении электрического тока через металлический проводник электроны сталкиваются то с нейтральными молекулами, то с молекулами, потерявшими электроны. Движущийся электрон либо отщепляет от нейтральной молекулы новый электрон, теряя свою кинетическую энергию и образуя новый положительный ион, либо соединяется с молекулой, потерявшей электрон (с положи­тельным ионом), образуя нейтральную молекулу. При столкнове­нии электронов с молекулами расходуется энергия, которая пре­вращается в тепло. Любое движение, при котором преодолевается сопротивление, требует затраты определенной энергии. Так, напри­мер, для перемещения какого-либо тела преодолевается сопротив­ление трения и работа, затраченная на это, превращается в тепло.

Электрическое сопротивление проводника играет ту же роль, чтя и сопротивление трения. Таким образом, для проведения тока через проводник источник тока затрачивает некоторую энергию, которая превращается в тепло. Переход электрической энергии в тепловую отражает закон Ленца - Джоуля или закон теплового действия тока.

Русский ученый Ленц и английский физик Джоуль одновремен­но и независимо один от другого установили, что при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику . Это положение называется законом Лен­ца - Джоуля.

Если обозначить количество теплоты, создаваемое током, буквой Q , силу тока, протекающего по проводнику,- I , сопротивление проводника r и время, в течение которого ток протекал по проводнику, t , то закону Ленца - Джоуля можно придать следующее выражение:

Пример 1. Определить количество теплоты, выделенное в нагревательном приборе в течение 0,5 ч, если он включен в сеть с напряжением 110 в и имеет сопротивление 24 ом .

Решение. Время прохождения в секундах:

t =0,5 ч =30 мин =30х60=1800 сек .

Количество теплоты, выделенное в приборе,

Примеры 2. В электрическом кипятильнике вода, потребляя количество теплоты 400 000 дж , закипает через 15 мин . Определить сопротивление нагрева­тельного элемента этого кипятильника, а также мощность, если кипятильник ра­ботает под напряжением 220 в и его к. п. д. равен 80%.

Решение. Так как к. п. д. кипятильника равен 80%, выделенное нагрева­тельным элементом количество теплоты

Q = 400 000: 0,8 = 500 000 дж .

Силу тока, протекающего через кипятильник, найдем из слёлующей формулы

Сопротивление нагревательного элемента

Мощность, потребляемая кипятильником,

17.Сегнетоэлектрики - диэлектрики, которые обладают в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в условиях отсутствия внешнего электрического поля. К сегнетоэлектрикам относятся, например, подробно изученные И. В. Курчатовым (1903-1960) и П. П. Кобеко (1897-1954) сегнетова соль NaKC 4 H 4 O 6 4Н 2 O (от нее и было получено данное название) и титанат бария ВаТiO 3 .ПЬЕЗОЭЛЕКТРИКИ

кристаллические вещества, в к-рых при сжатии или растяжении в определённых направлениях возникает электрич. поляризация даже в отсутствии электрич. поля (п р я м о й п ь е з о э ф ф е к т). Следствием прямого пьезоэффектаявл. о б р а т н ы й п ь е з о э ф ф е к т - появление механич. деформации под действием электрич. поля. Связь между механич. и электрич. переменными (деформацией и электрич. полем) носит в обоих случаях линейный характер. Обратныйпьезоэффект следует отличать от электрострикции.

Пироэлектрики -кристаллическиедиэлектрики, обладающие самопроизвольной (спонтанной)поляризациейв отсутствие внешних воздействий. Обычно спонтанная поляризация не заметна, так как электрическое поле, создаваемое ею, компенсируется полем свободныхэлектрических зарядов, которые «натекают» на поверхность пироэлектрика из егообъёмаи из окружающеговоздуха. При изменении температуры величина спонтанной поляризации изменяется, что вызывает появление электрического поля, которое можно наблюдать до его компенсации свободными зарядами.

Диэлектрик (изолятор) - вещество, плохо проводящее или совсем не проводящее электрический ток. Плотность свободных носителей заряда в диэлектрике не превышает 108 шт/см³. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию. К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

Развитие радиотехникипотребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

18.Электрическим током называют упорядоченное движение заряженных частиц или заряженных макроскопических тел. Различают два вида электрических токов – токи проводимости и конвекционные токи.

Током проводимости называют упорядоченное движение в веществе или вакууме свободных заряженных частиц – электронов проводимости (в металлах), положительных и отрицательных ионов (в электролитах), электронов и положительных ионов (в газах), электронов проводимости и дырок (в полупроводниках), пучков электронов (в вакууме). Этот ток обусловлен тем, что в проводнике под действием приложенного электрического поля напряженностью происходит перемещение свободных электрических зарядов.Конвекционным электрическим током называют ток, обусловленный перемещением в пространстве заряженного макроскопического тела Для возникновения и поддержания электрического тока проводимости необходимы следующие условия: 1) наличие свободных носителей тока (свободных зарядов); 2) наличие электрического поля, создающего упорядоченное движение свободных зарядов; 3) на свободные заряды, помимо кулоновских сил, должны действовать сторонние силы неэлектрической природы; эти силы создаются различными источниками тока (гальваническими элементами, аккумуляторами, электрическими генераторами и др.); 4) цепь электрического тока должна быть замкнутой. За направление электрического тока условно принимают направление движения положительных зарядов, образующих этот ток. Количественной мерой электрического тока является сила тока I - скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение S проводника в единицу времени:

Ток, сила и направление которого не изменяются с течением времени, называется постоянным Для постоянного тока

Электрический ток, изменяющийся с течением времени, называется переменным . Примером такого тока является синусоидальный электрический ток, применяемый в электротехнике и электроэнергетике (рис. 2.2, б ). Единица силы тока – ампер (А). В СИ определение единицы силы тока формулируется следующим образом: – это сила такого постоянного тока, который при протекании по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, создает между этими проводниками силу, равную на каждый метр длины. Для характеристики направления электрического тока проводимости в разных точках поверхности проводника и распределения силы тока по этой поверхности вводится плотность тока.Плотностью тока называют векторную физическую величину, совпадающую с направлением тока в рассматриваемой точке и численно равную отношению силы тока dI , проходящего через элементарную поверхность, перпендикулярной направлению тока, к площади этой поверхности:

Единица плотности тока – ампер на квадратный метр (А/м2 ). Плотность постоянного электрического тока одинакова по всему поперечному сечению однородного проводника. Поэтому для постоянного тока в однородном проводнике с площадью поперечного сечения S сила тока равна

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение зарядов от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению тока. Поэтому для поддержания постоянного электрического тока в цепи необходимо наличие устройства, способного создавать и поддерживать разность потенциалов за счет работы некоторых сторонних сил. Такие устройства называют источниками тока . Под действием сторонних сил носители тока движутся внутри источника электрической энергии против сил электростатического поля (против кулоновских сил, вызывающих соединение разноименных зарядов, а следовательно, выравнивание потенциалов и исчезновение тока), так что на концах внешней цепи поддерживается постоянная разность потенциалов и в цепи протекает постоянный электрический ток. Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой сторонних сил при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС) источника: Единица ЭДС –вольт (В). Сторонняя сила, действующая на заряд , может быть выражена через напряженностьполя сторонних сил

Тогда работа сторонних сил по перемещению заряда на замкнутом участке цепи будет равна:

Разделив на и учитывая (получим выражение для ЭДС, действующей в цепи:

19.Последовательное и параллельное соединения вэлектротехнике- два основных способа соединения элементовэлектрической цепи. При последовательном соединении все элементы связаны друг с другом так, что включающий их участок цепи не имеет ни одногоузла. При параллельном соединении все входящие в цепь элементы объединены двумяузламии не имеют связей с другими узлами, если это не противоречит условию.

При последовательном соединении проводников сила тока во всех проводниках одинакова.

При параллельном соединении падение напряжения между двумя узлами, объединяющими элементы цепи, одинаково для всех элементов. При этом величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Последовательное соединение

При последовательном соединении проводников сила тока в любых частях цепи одна и та же:

Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:

Резисторы

Катушка индуктивности

Электрический конденсатор

Параллельное соединение

Сила тока в неразветвленной части цепи равна сумме сил токов в отдельных параллельно соединённых проводниках:

Напряжение на участках цепи АВ и на концах всех параллельно соединённых проводников одно и то же:

Резистор

При параллельном соединении резисторов складываются величины, обратно пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора)

Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее(искомое) сопротивление.

Для двух параллельно соединённых резисторов их общее сопротивление равно: .

Если , то общее сопротивление равно:

При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.

Катушка индуктивности

Электрический конденсатор

Закон Ома для участка цепи. Немецкий физик Георг Ом (1787-1854) в 1826 г. обнаружил, что отношение напряженияU между концами металлического проводника, являющегося участком электрической цепи, к силе токаI в цепи есть величина постоянная:

Эту величину R называютэлектрическим сопротивлением проводника. Единица электрического сопротивления в СИ -ом (Ом). Электрическим сопротивлением 1 Ом обладает такой участок цепи, на котором при силе тока 1 А напряжение равно 1 В:

Опыт показывает, что электрическое сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площадиS поперечного сечения:

Постоянный для данного вещества параметр называетсяудельным электрическим сопротивлением вещества. Экспериментально установленную зависимость силы токаI от напряженияU и электрического сопротивленияR участка цепи называютзаконом Ома для участка цепи:

Закон Джоуля-Ленца формула и формулировка

Так или иначе, оба ученых исследовали явление нагревания п роводников электрическим током, они установили опытным путём следующую закономерность: количество теплоты, которое выделяется в проводнике с током, прямо пропорционально сопротивлению проводника, квадрату силы тока и времени прохождения тока.

Позже дополнительные исследования выявили, что данное утверждение справедливо для всех проводников: жидких, твёрдых и даже газообразных. В связи с этим открытая закономерность стала законом.

Итак, рассмотрим сам закон Джоуля-Ленца и его формулу, которая выглядит так:

20. Электродвижущая сила (ЭДС) - скалярнаяфизическая величина , характеризующая работу сторонних (непотенциальных) сил висточниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равнаработе этих сил по перемещению единичного положительногозаряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (). В замкнутом контуре () тогда ЭДС будет равна:

, где - элемент длины контура.

ЭДС так же, как и напряжение , измеряется в вольтах . Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого источника равна нулю.

Баланс мощностей Для любых замкнутых цепей сумма мощностей источников электрической энергии Р И, равна сумме мощностей, расходуемых в приемниках энергии Р П. Мощность источников указывает на то, какое количество работы они могут выполнить в электрической цепи каждую секунду. Максимально допустимая мощность приемников это то, что в нормальных условиях может выдержать пассивный элемент. Если превысить допустимую мощность резисторов, обычно указываемую на корпусе, то он может перегреться, его проводящий слой разрушится, почернеет окраска корпуса и деталь выйдет из строя.

Мощность, отдаваемая источниками ЭДС, равна.

Общее количество теплоты, выделяемое током в цепи, не всегда совпадает с соответствующим джоулевым теплом. Так на месте контакта двух различных проводников, помимо джоулева тепла, выделяется также, так называемое тепло Пельтье, зависящее от сторонних ЭДС, определяемых в свою очередь химической природой проводников, их температурой и т.д. При наличии в проводнике градиента температур в нем выделяется еще и теплота Томсона. В большинстве практических случаев при небольших токах теплотой Пельтье и Томсона можно пренебрегать.

Пра́вилазна́ков (в оптике) - правила определения знаков величин и направлений, принятые при расчёте оптических систем, а также при изображении (и чтении) оптических схем.

При расчёте и анализе оптических систем, положительным направлением (прямым ходом луча) вдоль оптической оси считается направление света слева направо, преломляющие и отражающие поверхности и разделяющие их среды нумеруются по порядку их следования в направлении распространения света, а оптическую систему принято изображать так, чтобы её первая (входная) поверхность располагалась на рисунке (чертеже, схеме) слева.

К тому же, при расчёте принято придерживаться некоторых правил, которые, так же, отражаются на схемах, чертежах и рисунках:

    угол луча с оптической осью считается положительным, если луч, пересекающий ось, идёт сверху вниз, и отрицательным, если снизу вверх;

    линейные величины предмета и изображения, а также отрезки высот лучей считаются положительными, если они расположены над осью, и отрицательными, если под нею;

    радиус кривизны поверхности считается положительным, если её центр находится справа от поверхности, и отрицательным - если слева от поверхности, то есть отсчёт производится от поверхности к центру;

    величины толщин и воздушных промежутков между преломляющими поверхностями при движении света слева направо всегда считаются положительными;

    углы между лучом и нормалью к поверхности в точках падения луча ε и ε" (углы падения и преломления) считаются положительными, если нормаль , чтобы совпасть с направлением луча, должна быть повёрнута по ходу часовой стрелки;

    угол φ между нормалью и оптической осью считается положительным, если оптическая ось, чтобы совпасть с нормалью, должна быть повёрнута по ходу часовой стрелки;

    при отражении на поверхности изменяется знак у показателя преломления n", угла отражения ε" и величины расстояния между отражающей поверхностью и следующей (при движении света справа налево);

    фокусные расстояния считаются положительными по направлению света от главных плоскостей ;

    при преломлении и отражении лучей на сферической поверхности за начало отсчёта отрезка принимается вершина поверхности (точка 0 ). Отрезки считаются положительными, если они откладываются вдоль оси справа от точки 0 по направлению распространения света, и отрицательными, когда откладываются слева от точки 0 . В случае отрицательных значений указанных величин перед ними ставится знак минус.

Одноимённые (соответственные) и сопряжённые точки, отрезки и углы в пространстве предметов и пространстве изображений обозначаются одинаковыми буквами. Исключение, здесь, делается для точек переднего F и заднего F" фокусов которые обозначаются одинаковой буквой хотя и не сопряжены друг с другом.

Обозначения относящиеся к пространству изображений, обозначаются знаком "штрих" сверху каждой буквы. Например, обозначение задней главной плоскости указывает, что данная плоскость принадлежит, именно, пространству изображений.

22.Правила Кирхгофа (часто, в литературе, называются не совсем корректноЗако́ныКирхго́фа ) - соотношения, которые выполняются между токами и напряжениями на участках любойэлектрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного иквазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач втеории электрических цепейи практических расчётов сложных электрических цепей. Применение правил Кирхгофа к линейной электрической цепи позволяет получитьсистему линейных уравненийотносительно токов или напряжений, и соответственно, найти значение токов на всех ветвях цепи и все межузловые напряжения. СформулированыГуставом Кирхгофомв1845 году. Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами Природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (3-еуравнение Максвеллапри неизменном магнитном поле).

В XIX веке независимо друг от друга, англичанин Дж.Джоуль и россиянин Э.Х.Ленц изучали нагревание проводников электрическим током и опытным путём установили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.
Позднее было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому открытая закономерность получила название закон Джоуля-Ленца:

На рисунке показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля-Ленца. Разделив силу тока на напряжение, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I2Rt и Q=cm D вычисляют количества теплот, которые по результатам опыта должны совпадать.
Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля-Ленца можно получить не только экспериментально, но и вывести теоретическим путём. Сделаем это.



Полученная формула A=I2Rt похожа на формулу закона Джоуля-Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даёт нам право считать эти величины равными? Запишем первый закон термодинамики (см. § 6-з) и выразим из него работу:
D U = Q + A , следовательно, A = D U - Q .
Вспомним, что D U - это изменение внутренней энергии нагреваемого током проводника; Q - количество теплоты, отданное проводником (на это указывает знак «-» впереди); A - работа, совершённая над проводником. Выясним, что это за работа.
Сам проводник неподвижен, но внутри него движутся электроны, постоянно наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, над ними постоянно совершают работу силы электрического поля, создаваемого источником электроэнергии. Поэтому A - работа сил электрического поля по перемещению электронов внутри проводника.
Обсудим теперь величину D U (изменение внутренней энергии) применительно к проводнику, в котором начинает течь ток.
Проводник будет постепенно нагреваться, значит, его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды. Согласно закономерности Ньютона (см. § 6-к), будет возрастать мощность теплоотдачи проводника. Через некоторое время это приведёт к тому, что температура проводника перестанет увеличиваться. С этого момента внутренняя энергия проводника перестанет изменяться , то есть величина D U станет равной нулю.
Тогда первый закон термодинамики для этого состояния будет: A = -Q. То есть если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в другом виде:

Эти формулы мы пока будем считать равноправными. Позднее мы обсудим, что правая формула справедлива всегда (поэтому она и носит название закона), а две левых - только при определённых условиях, которые мы сформулируем при изучении физики в старших классах.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника