Схема однополупериодного выпрямителя с емкостным фильтром. Двухполупериодный выпрямитель — однофазные, трехфазные, мостовые


Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

Допущения: нагрузка чисто активная, вентиль - идеальный электрический ключ.

Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю. Среднее значение переменного тока по отношению к подведенному действующему составит:

Эта величина вдвое меньше, чем в полномостовом. Важно отметить, что среднеквадратичное (устар. эффективное, действующее) значение напряжения на выходе однополупериодного выпрямителя будет в корень из 2 меньше подведенного действующего, а потребляемая нагрузкой мощность в 2 раза меньше (для синусоидальной формы сигнала)

Отношение среднего значения выпрямленного напряжения Uн ср к действующему значению входного переменного напряжения Uвх д называется коэффициентом выпрямления (Kвып). Для рассматриваемой схемы Kвып=0,45.

Максимальное обратное напряжение на диоде Uобр max=Uвх max=πUн ср, т.е. более чем в три раза превышает среднее выпрямленное напряжение (это следует учитывать при выборе диода для выпрямителя).

Коэффициент пульсаций, равный отношению амплитуды низшей (основной) гармоники пульсаций к среднему значению выпрямленного напряжения, для описываемой схемы однополупериодного выпрямителя равен:

Kп=Uпульс max01Uн ср=π2=1,57.

27. Двуполупериодный выпрямитель со средней точкой. Диаграммы работы. Принцип действия. Основные параметры.

На интервале времени под действием напряжения Uвх1 диод VD1 смещен в прямом направлении (диод VD2 при этом смещен в обратном направлении) и поэтому ток в нагрузочном резисторе определяется только напряжением Uвх1. На интервале диод VD1 смещен в обратном направлении, а ток нагрузки протекает через прямосмещенный диод VD2 и определяется напряжением Uвх2. Таким образом, средние значения тока и напряжения на нагрузочном резисторе в случае двухполупериодного выпрямления будут в два раза превышать аналогичные показатели для однополупериодной схемы:

Uвх max и Iвх max - максимальные амплитудные значения входного напряжения и тока выпрямителя (по одному из напряжений питания),

Uвх д и Iвх д - действующие значения входного напряжения и тока выпрямителя.

Отрицательным свойством двухполупериодной схемы выпрямления со средней точкой является то, что во время прохождения тока через один из диодов обратное напряжение на другом (закрытом) диоде в пике достигает удвоенного максимального входного напряжения: Uобр max=2Umax. Этого нельзя забывать при выборе диодов для выпрямителя.

Основная частота пульсаций выпрямленного напряжения в данной схеме будет равна удвоенной частоте входного напряжения. Коэффициент пульсаций рассчитанный по методике, аналогичной описанной для схемы однофазного однополупериодного выпрямителя (разложение в ряд Фурье и выделение первой составляющей пульсаций) будет равен: Kп=0,67.

параметры смотреть в предыдущем пункте.

28. Однофазный мостовой выпрямитель. Диаграммы работы и принцип действия. Основные параметры выпрямителя.

Диаграммы работы:

Принцип работы:

В однофазной мостовой схеме к одной из диагоналей моста подключается источник переменного напряжения (вторичная обмотка трансформатора), а к другой – нагрузка.

В мостовой схеме диоды работают попарно: в течение одной половины периода сетевого напряжения ток протекает от вторичной обмотки трансформатора по цепи VD1, RН, VD2, а на втором полупериоде – по цепи VD3, RН, VD4, причем в каждом полупериоде через нагрузку ток проходит в одном направлении, что и обеспечивает выпрямление. Коммутация диодов происходит в моменты перехода переменного напряжения через нуль.

где U2 ─ действующее значение переменного напряжения на входе выпрямителя.

Параметры:

    Действующее значение напряжения на входе выпрямителя

    Среднее значение тока через диод в два раза меньше среднего значения тока нагрузки Id:

    Максимальное значение тока, протекающего через диод

    Действующее значение тока диода

    Действующее значение переменного тока на входе выпрямителя

следовательно,

    коэффициент пульсации выпрямленного напряжения

    Коэффициент трансформации трансформатора

    Мощность первичной и вторичной обмоток вентильного трансформатора

    Расчетная мощность трансформатора

29. Назначение сглаживающих фильтров. Схема однофазного однополупериодного выпрямителя с емкостным фильтром. Особенности работы. Внешние характеристики выпрямителей с фильтрами

Сглаживающий фильтр - устройство, предназначенное для уменьшения переменной составляющей выпрямленного напряжения до величины, при которой обеспечивается нормальная работа питаемой аппаратуры или её каскадов.

Схема однофазного однополупериодного выпрямителя с емкостным фильтром .



Особенности работы.

Для снижения уровня пульсаций на выходе выпрямителя включаются разнообразные индуктивно-емкостные фильтры. Наличие конденсаторов и индуктивностей в цепи нагрузки оказывает значительное влияние на работу выпрямителя. В маломощных выпрямителях обычно применяют простейший емкостный фильтр, который представляет собой конденсатор, включенный параллельно нагрузке.

В установившемся режиме работы, когда напряжение на входе выпрямителя U вх больше напряжения на нагрузке U н и диод выпрямителя открыт, конденсатор будет подзаряжаться, накапливая энергию, поступающую от внешнего источника. Когда же напряжение на входе выпрямителя упадет ниже уровня открывания диода и он закроется, конденсатор начнет разряжаться через R н, предотвращая при этом быстрое падение уровня напряжения на нагрузке. Таким образом, результирующее напряжение на выходе выпрямителя (на нагрузке) окажется уже не таким пульсирующим, а будет значительно сглажено, причем тем сильнее, чем большую емкость будет иметь применяемый конденсатор.

Обычно, емкость конденсатора фильтра выбирают такой, чтобы его реактивное сопротивление было намного меньше сопротивления нагрузки (1/ωC R н). В этом случае пульсации напряжения на нагрузке малы и допустимо предполагать, что это напряжение постоянно (U н ≈const ).

30. Основные параметры стабилизаторов напряжения. Параметрические стабилизаторы.

Основные параметры стабилизатора: 1. Коэффициент стабилизации , равный отношению приращений входного и выходного напряжений. Коэффициент стабилизации характеризует качество работы стабилизатора.


2. Выходное сопротивление стабилизатора Rвых = Rдиф Для нахождения Кст и Rвых рассматривается схема замещения стабилизатора для приращений. Нелинейный элемент работает на участке стабилизации, где его сопротивление переменному току Rдиф является параметром стабилизатора.


Дифференциальное сопротивление Rдиф определяется из уравнения:


Для схемы замещения получаем коэффициент стабилизации с учетом, что Rн >> Rдиф и Rбал >> Rдиф,:


Параметрический стабилизатор:


В приведенной схеме, при изменении входного напряжения или тока нагрузки - напряжение на нагрузке практически не меняется (оно остаётся таким же, как и на стабилитроне), вместо этого изменяется ток через стабилитрон (в случае изменения входного напряжения и ток через балластный резистор тоже). То есть, излишки входного напряжения гасятся балластным резистором, величина падения напряжения на этом резисторе зависит от тока через него, а ток через него зависит в том числе от тока через стабилитрон, и таким образом, получается, что изменение тока через стабилитрон регулирует величину падения напряжения на балластном резисторе.

Коэффициент стабилизации параметрического стабилизатора напряжения

Кст = 5 ÷ 30 Для получения повышения стабилизированного напряжения применяют последовательное включение стабилитронов. Параллельное включение стабилитронов не допускается. С целью увеличения коэффициента стабилизации возможно каскадное включение нескольких параметрических стабилизаторов напряжения.

31. Структурные схемы компенсационных стабилизаторов. Принципиальная схема непрерывного стабилизатора напряжения. Получить выражение для выходного напряжения. Недостатки таких стабилизаторов.

Компенсационный стабилизатор напряжения, по сути, является устройством, в котором автоматически происходит регулирование выходной величины, то есть он поддерживает напряжение на нагрузке в заданных пределах при изменении входного напряжения и выходного тока. По сравнению с параметрическими компенсационные стабилизаторы отличаются большими выходными токами, меньшими выходными сопротивлениями, большими коэффициентами стабилизации.


Непрерывный


Принципиальная схема стабилизатора напряжения непрерывного действия приведена на рис. б . Здесь роль ИЭ выполняет делитель напряжения на резисторах R 1 и R 2 . Балластный резистор R б и стабилитрон VD представляют собой маломощный параметрический стабилизатор, выполняющий роль ИОН. Операционный усилитель (ОУ) DA , включенный по схеме дифференциального усилителя, выполняет роль УС. ТранзисторVT является РЭ стабилизатора.

Выходное напряжение стабилизатора можно регулировать, меняя соотношение сопротивлений делителя R 1 и R 2 :



В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер .

Фотография трансформатора

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель


Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:


На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:


Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.


Двухполупериодный выпрямитель со средней точкой


Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1 , во время отрицательного полупериода работает вторая часть схемы обозначенная В2 . Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

Двухполупериодный выпрямитель, мостовая схема


И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы :


Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один , ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.


Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:


При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:


Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:


Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.


Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича , имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как , нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.


Схема Ларионова может использоваться как "звезда-Ларионов” и "треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи - AKV .

Обсудить статью ВЫПРЯМИТЕЛИ

Классификация и основные параметры выпрямителей

Применение полупроводниковых диодов. Однофазные выпрямители

Выпрямитель - это устройство, предназначенное для преобразования переменного напряжения в постоянное.

Основными элементами выпрямителя являются трансформатор и диоды, с помощью которых обеспечивается одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее. С помощью трансформатора в выпрямителях производится преобразование величины напряжения, электрическое разделение отдельных цепей, преобразование числа фаз.

В зависимости от числа фаз питающего напряжения различают схемы однофазного и трехфазного выпрямления.

Основными величинами, характеризующими эксплуатационные свойства выпрямителей, являются:

Средние значения выпрямленного напряжения U d (U ср) и тока I d (I ср);

Коэффициент полезного действия h ;

Коэффициент мощности c ;

Внешняя характеристика - зависимость напряжения в нагрузке от тока нагрузки U d = f (I d);

Коэффициент пульсаций К п - отношение амплитуды пульсаций выходного напряжения к среднему значению выпрямленного напряжения (постоянной составляющей).

В зависимости от характера нагрузки изменяется режим работы трансформатора и диодов. Различают режимы работы выпрямителя на чисто активную, активно-индуктивную и активно-ёмкостную нагрузки.

Рассмотрим работу различных схем однофазных выпрямителей на активную нагрузку.

Схема однофазного однополупериодного выпрямителя представлена на рис. 3.1.

Рис. 3.1. Однофазный однополупериодный выпрямитель

На схеме приняты следующие обозначения напряжений и токов:

- U 1 , U 2 - действующие значения напряжений первичной и вторичной обмоток трансформатора;

- I 1 , I 2 - действующие значения токов первичной и вторичной обмоток трансформатора;

- I a - средний ток диода VD;

- U d - среднее значение выпрямленного напряжения;

- I d - среднее значение выпрямленного тока.

Анализ работы схемы проведём по упрощённой методике, без учёта потерь напряжения на активном сопротивлении обмоток трансформатора и динамическом сопротивлении открытого диода.

Рассмотрим временную диаграмму работы схемы (рис. 3.2).

Рис. 3.2. Временная диаграмма работы однофазного однополупериодного выпрямителя

Под действием переменного напряжения u 2 = U 2 m sinwt вторичной обмотки ток в цепи нагрузки может проходить только в течение нечётных полупериодов, когда анод диода имеет положительный потенциал относительно катода. В чётные полупериоды, когда потенциал анода становится отрицательным, ток в цепи равен нулю.

Мгновенное значение выпрямленного тока:

, при 0

При p

где - максимальное значение выпрямленного тока.

Среднее значение выпрямленного напряжения:

Среднее значение выпрямленного тока (а также тока диода):

. (3.2)

Действующее (эффективное) значение тока диода:

Максимальное обратное напряжение на диоде достигает амплитудного значения напряжения вторичной обмотки:

По найденным величинам I a , I a .эф и U b . max выбирается диод для работы в схеме. Согласно полученным результатам диод должен допускать максимальное обратное напряжение в 3,14 раза превышающее напряжение в нагрузке, или в Ö2 раз больше напряжения вторичной обмотки трансформатора. Переменная составляющая выпрямленного напряжения и тока для данной схемы, как следует из временных диаграмм для u и i , велика, причем основная гармоника пульсаций имеет частоту, равную частоте питающей сети.

Рассмотрим режим работы трансформатора. Действующее значение тока вторичной обмотки:

.

Отношение действующего значения фазного тока I 2 к его среднему значению I 2 cp называется коэффициентом формы тока D (или К ф):

Постоянная составляющая фазного тока:

, (3.6)

где m 2 - число фаз вторичной обмотки трансформатора. В рассматриваемой схеме m 2 = 1.

Следовательно, для рассматриваемой схемы коэффициент формы тока:

. (3.7)

Действующее значение напряжения вторичной обмотки трансформатора:

.

Расчетная мощность вторичной обмотки трансформатора:

где P d = U d ×I d - мощность постоянного тока в нагрузке.

Действующее значение тока в первичной обмотке трансформатора можно определить из уравнения магнитного равновесия трансформатора, если пренебречь током намагничивания и учесть, что постоянная составляющая тока в первичную обмотку не трансформируется. Уравнение магнитного равновесия трансформатора по переменному току

Полная мощность первичной обмотки.

Если полагать, что напряжение питающей сети синусоидально, то . Следовательно, коэффициент мощности

, (3.12)

где - коэффициент искажений;

j 1 - угол сдвига фаз между напряжением питающей сети и первой гармоникой тока первичной обмотки.

В рассматриваемом случае j 1 = 0, но коэффициент мощности меньше единицы, так как n = 0,9 < 1. Это является одной из причин, вызывающих увеличение габаритных размеров трансформатора.

Активная мощность выпрямленного тока вычисляется как среднее значение мощности пульсирующего тока за период:

, (3.13)

то есть мощность Р а больше мощности постоянного тока в нагрузке примерно в 2,5 раза, что также является причиной увеличения размеров трансформатора.

В сердечнике трансформатора за счет постоянной составляющей тока вторичной обмотки создается добавочный постоянный магнитный поток, насыщающий сердечник трансформатора. Это явление принято называть вынужденным намагничиванием (подмагничиванием) трансформатора.

В результате подмагничивания намагничивающий ток трансформатора возрастает в несколько раз по сравнению с током при нормальном режиме работы (без подмагничивания). Возрастание намагничивающего тока требует увеличивать сечение провода первичной обмотки и размер трансформатора в целом. Однополупериодный выпрямитель из-за перечисленных недостатков применяется достаточно редко.

Выпрямители относятся ко вторичным источникам электропитания, для которых первичным источником являются сети переменного тока.
Выпрямитель - это устройство, которое преобразует переменное напряжение питающей сети в однонаправленное пульсирующее. Именно однонаправленное пульсирующее так как назвать его постоянным немного некорректно. Существует и несколько иное определение: выпрямитель предназначен для преобразования переменного напряжения в импульсное напряжение одной полярности.

Выпрямители могут быть однополупериодные и двуполупериодные . К тому же они разделяются на однофазные и многофазные .

Итак, начнем с однофазного однополупериодного выпрямителя на полупроводниковом диоде.

Однополупериодный выпрямитель

Схема однополупериодного выпрямителя до боли проста и объяснять тут нечего. Для наглядности положительные и отрицательные полуволны показаны разными цветами. Поскольку диод обладает свойствами односторонней проводимости, на выходе получается пульсирующее напряжение одной полярности. Для схемы характерны следующие параметры:

Среднее значение выпрямленного напряжения

Действующее значение входного напряжения

Среднее значение выпрямленного тока

Действующее значение тока во вторичной обмотке трансформатора

Коэффициент пульсаций

К достоинствам схемы можно отнести простоту конструкции. Недостатки - большие пульсации, малые значения выпрямленного тока и напряжения, низкий КПД. Применяется такая схема для питания низкоомных нагрузок, некритичных к высоким пульсациям.


В бытовой технике однолупериодные выпрямители применяются в основном в импульсных источниках питания: из-за большой рабочей частоты (около 15 кГц а иногда и выше) пульсации не столь чувствительны и их легче сгладить.

Двухполупериодный выпрямитель

Схема выпрямления с выводом от средней точки трансформатора


Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством. Для такой схемы характерны следующие параметры:

U ср = 0.9U вх
U вх = 1.11U ср
I ср = 0.9U вх /R н
I 2 = 0.78I ср
p = 0.67

Достоинства: удвоенные значения U ср и I ср , вдвое меньший коэффициент пульсаций по сравнению с однополупериодной схемой. Недостатки: наличие трансформатора с двумя симметричными обмотками (что увеличивает его массогабаритные показатели). К тому же на диодах удвоенное обратное напряжение.

Двухполупериодный выпрямитель более распространен, чем однополупериодный, это связано с многочисленными преимуществами такой схемы. Чтобы объяснить, в чем именно заключается преимущество, следует обратиться к теоретическим основам электротехники.

В первую очередь рассмотрим отличие двухполупериодного выпрямителя от однополупериодного, для этого нужно понять принцип работы каждого из них. Примеры схем с осциллограммами дадут наглядное представление о преимуществах и недостатках этих устройств.

Ниже приведена типичная схема подобного устройства с минимумом элементов.

Схема: простейший преобразователь

Обозначения:

  • Tr – трансформатор;
  • DV- вентиль (диод);
  • C f – емкость (играет роль сглаживающего фильтра);

Теперь рассмотрим осциллограмму в контрольных точках U 1 , U 2 и U n .


Пояснение:

  • в контрольной точке U 1 отображается диаграмма снятая на входе устройства;
  • U 2 – диаграмма перед емкостным сглаживающим фильтром;
  • U n – осциллограмма на нагрузке.

Временная диаграмма наглядно показывает, что после вентиля (диода) выпрямленное напряжение представляется в виде характерных импульсов, состоящих из положительных полупериодов. Когда происходит такой импульс, накапливается заряд емкостного фильтра, который разряжается во время отрицательного полупериода, это позволяет несколько сгладить пульсации.

Недостатки такой схемы очевидны — это низкий КПД, в следствии высокого уровня пульсаций. Но несмотря на это, устройства такого типа находят свое применение в цепях с низким токопотреблением.

Принцип действия двухполупериодной схемы

Рассмотрим два варианта реализации двухполупериодного преобразователя (выпрямителя): балансный и мостовой. Схема первого показана на рисунке ниже.


Используемые элементы:

  • Tr – трансформатор, у которого имеются две одинаковые вторичные обмотки (или одна с отводом по середине);
  • DV 1 и DV 2 – вентили (диоды);
  • C f – емкостной фильтр;
  • R n – сопротивление нагрузки.

Приведем сразу для наглядности осциллограмму в контрольных точках.


  • U 1 – осциллограмма на входе;
  • U 2 – график перед емкостным фильтром;
  • U n – диаграмма на выходе устройства.

Данная схема — это два совмещенных однополупериодных преобразователя, то есть на два раздельных источника приходится одна общая нагрузка. Результат работы такого устройства наглядно демонстрирует график U 2 . Из него видно, что в процессе используются оба полупериода, что и дало название этим преобразователям.

Осциллограмма наглядно демонстрирует преимущества такого устройства, а именно, следующие факты:

  • частота пульсаций на выходе устройства удваивается;
  • уменьшение «провалов» между импульсами допускает использование меньшей фильтрующей емкости;
  • двухтактный преобразователь обладает большим КПД, чем однополупериодный.

Теперь рассмотрим мостовой тип, он изображен на рисунке ниже.


Схема: Пример использования диодного моста

Осциллограмма устройства мостового типа практически не отличается от балансного, поэтому приводить ее нет смысла. Основное преимущество такой схемы – нет необходимости использовать более сложный трансформатор.

Видео: Двухполупериодный выпрямительный мост

Преобразователи, где используется полупроводниковый диодный мост, широко применяются как в электротехнике (например, в аппаратах для сварки, где номинальный ток может доходить до 500 ампер), так и радиоэлектронике, в качестве источника для слаботочных цепей.

Заметим, что помимо полупроводниковых можно использовать и вакуумные диоды – кенотроны (ниже показан пример схемы такого устройства).


Схема: преобразователь на двуханодном кенотроне 6Ц4П

Собственно, представленная схема – это классическая реализация балансного преобразователя двухполупериодного типа. На сегодняшний день вакуумные диоды практически не применяются, их заменили полупроводниковые аналоги.

Как организовать двухполярное питание

Сочетая балансную схему и мостовую, можно получить преобразователь, который будет давать на выходе двухполярное питание с общей (нулевой) точкой. Причем, для одного она будет отрицательной, а для другого – положительной. Такие устройства широко применяются в БП для цифровой радиотехнике.


Схема: пример преобразователя с двухполярным выходом

Как реализовать удвоение напряжения

Ниже представлена схема, позволяющая получить на выходе устройства напряжение, вдвое выше исходного.


Для такого устройства характерно, что два конденсатора заряжаются в разные полупериоды, а поскольку они расположены последовательно, то, по итогу, на «R n » суммарное напряжение будет вдвое выше, чем на входе.

В преобразователе с таким умножителем можно применять трансформаторы с меньшим напряжением вторичной обмотки.

Использование операционных усилителей

Как известно, у диодов вольтамперная характеристика нелинейная, создавая однофазный прицензионный (высокоточный) выпрямитель двухполупериодного типа на микросхеме ОУ, можно существенно снизить погрешность. Помимо этого, имеется возможность создать преобразователь, позволяющий стабилизировать ток на нагрузке. Пример схемы такого устройства показан ниже.


Схема: простой стабилизатор на операционном усилителе

На рисунке изображен простейший стабилизатор тока. Используемый в нем ОУ — это управляемый по напряжению источник. Такая реализация позволяет добиться, чтобы ток на выходе преобразователя не зависел от потери напряжения на нагрузке R н и диодном мосту D1-D4.

Если требуется стабилизация напряжения, схему преобразователя можно незначительно усложнить, добавив в нее стабилитрон. Он подключается параллельно сглаживающей емкости.

Кратко об управляемых преобразователях

Нередко требуется управлять напряжением на выходе преобразователя, не изменяя входное. Для этой цели наиболее оптимальным будет применение управляемых вентилей, пример такой реализации показан ниже.


Трехфазный выпрямитель

Мы рассматривали различные реализации однофазных двухполупериодных преобразователей, но подобные устройства используются и для трехфазных источников. Ниже, в качестве примера, показано устройство, созданное по схеме Ларионова.



Как показывает расположенный выше график, реализация мостовой схемы между парами фаз позволяет получить на выходе незначительные пульсации. Благодаря этому фильтрующую емкость можно существенно снизить, или вообще обойтись без нее.

Проектирование

Расчет даже простого двухполупериодного преобразователя является непростой задачей. Существенно упростить ее можно используя специальное программное обеспечение. Мы рекомендуем остановить выбор на программе Electronics Workbench, которая позволяет выполнить схематическое моделирование аналоговых и цифровых электрических устройств.

Смоделировав в этой программе двухполупериодный выпрямитель можно получить наглядное представление о принципе его работы. Встроенные формулы позволяют рассчитать максимальное обратное напряжение для диодов, оптимальную емкость гасящего конденсатора и т.д.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника