Как устроены и работают светодиоды. Устройство светодиодной лампы, принцип работы светодиода Led лампы принцип работы

Светодиоды были изобретены около полувека назад как более удобная альтернатива миниатюрным лампам с нитями накаливания. Новые осветительные элементы были более удобны, просты в эксплуатации и энергоэффективны. На протяжении последних 30 лет светодиоды совершенствуются и дорабатываются, захватывая все большую часть рынка. Причиной большой популярности стала эксплуатационная надёжность, большой рабочий ресурс и простой принцип работы светодиода.

Историческая справка

Исторически изобретателями светодиодов считаются физики Г. Раунд, О. Лосев и Н. Холоньяк, которые по-своему дополняли технологию в 1907, 1927 и 1962 годах, соответственно:

  1. Г. Раунд исследовал излучение света твердотельным диодом и открыл электролюминесценцию.
  2. О. В. Лосев в ходе экспериментов открыл электролюминесценцию полупроводникового перехода и запатентовал «световое реле».
  3. Н. Холоньяк считается изобретателем первого светодиода, применяемого на практике.

Светодиод Холоньяка светился в красном диапазоне. Его последователи и разработчики дальнейших лет разработали жёлтый, синий и зелёный светодиоды. Первый элемент высокой яркости для применения в волоконно-оптических линиях был разработал в 1976 году. Синий светодиод LED был сконструирован в начале 1990-х трио японских исследователей: Накамура, Амано и Акасаки.

Эта разработка отличалась крайне малой себестоимостью и, по сути, открыла эпоху повсеместного применения LED-светодиодов. В 2014 году японские инженеры получили за это Нобелевскую премию по физике.

В нынешнем мире светодиоды встречаются повсеместно:

  • в наружном и внутреннем освещении светодиодными лампами и лентами;
  • как индикаторы для буквенно-цифровых табло;
  • в рекламной технике: бегущих строках, уличных экранах, стендах и т.п;
  • в светофорах и уличном освещении;
  • в дорожных знаках со светодиодным оснащением;
  • в USB-устройствах и игрушках;
  • в подсветке дисплеев телевизоров, мобильных устройств.

Устройство светодиода

Конструкция светодиода представлена следующими составляющими:

  • эпоксидная линза;
  • кристалл-полупроводник;
  • отражатель;
  • проволочные контакты;
  • электроды (катод и анод);
  • плоский срез-основание.

Рабочие контакты закреплены в основании и проходят сквозь него. Другие компоненты лампы находятся внутри неё в герметичном пространстве. Оно образовано спайкой линзы и основания. При сборке на катоде закрепляется кристалл, а на контактах – проводники, которые через p-n-переход подключены к кристаллу.

Что такое OLED?

OLED – это органические полупроводниковые светодиоды, которые производятся из органических компонентов, которые светятся при прохождении электрического тока. Для их производства применяются многослойные тонкоплёночные структуры из различных полимеров. Принцип действия таких светодиодов также базируется на p-n-переходе. Преимущества OLED проявляются в сфере дисплеев – по сравнению с жидкокристаллическими и плазменными аналогами они выигрывают по яркости, контрастности, энергопотреблению и углам обзора. Технология OLED не используется для производства осветительных и индикаторных светодиодов.

Как работает элемент?

Принцип действия светодиода основывается на функциях и свойствах p-n-перехода. Под ним понимается специальная область, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). p-полупроводник является носителем положительного, а n-полупроводник – отрицательного заряда (электронов).

В конструкции светодиода положительным и отрицательным электродами выступают анод и катод, соответственно. Поверхность электродов, которая находится снаружи колбы, имеет металлические контактные площадки, к которым припаяны выводы. Таким образом, после подачи положительного заряда на анод и отрицательного – на катод – на p-n переходе начинает протекание электрического тока.

При прямом включении питания дырки из области p-полупроводника и электроны из области n-полупроводника буду направлено двигаться на встречу друг другу. В результате этого на границе дырочно-электронного перехода происходит рекомбинация, то есть обмен, и выделяется световая энергия в виде фотонов.

Для преобразования фотонов в видимый свет материал подбирается таким образом, чтобы длина их волна оставалась в видимых пределах цветового спектра.

Разновидности светодиодов

Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.

В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный и используются в электронном оборудовании, приборных и навигационных панелях и т.д.

Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.

По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:

  • DIP . Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
  • «Пиранья » или Superflux . Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
  • SMD . Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
  • COB . Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.

Технические характеристики и их зависимость друг от друга

Основными функциональными и эксплуатационными параметрами светодиодных светильников являются:

  • интенсивность светового потока (яркость);
  • рабочее напряжение;
  • сила тока;
  • цветовая характеристика;
  • длина волны.

Светодиодное напряжение и яркость выступают прямо пропорциональными величинами – чем выше одна, тем выше другая. Но это не напряжение питающего тока, а величина падения напряжения на приборе. Кроме того, от напряжения зависит и цвет светодиода. Таким образом, между собой связаны яркость, длина волны, напряжение и цвет светодиода, а их соотношение представлено в следующей таблице.

Принцип действия микроэлемента так устроен, что для стабильной работы в соответствии с номинальными характеристиками необходимо отслеживать не напряжение питания, а силу тока. Светодиоды работают от пульсирующего или постоянного тока, регулируя интенсивность которого можно изменять яркость излучения. Индикаторные светодиоды работают при токе в пределах 10-20 мА, а осветительные – от 20 мА и выше. Так, к примеру, элементы типа COB с четырьмя чипами требуют 80 мА.

Цветовая характеристика

Цвет свечения светодиодного элемента зависит от длины волны, которая измеряется в нанометрах. Для изменения цвета свечения в материал полупроводника на этапе производства добавляются активные вещества:

  • полупроводники обрабатываются аллюминий-индий-галлием (AlInGaP) для получения красного цвета;
  • оттенки зелёного и сине-голубого спектра получаются с использованием индий-нитрида галлия (InGaN);
  • для получения белого свечения на базе синего светодиода его кристалл покрывают люминофором, который преобразует синий спектр в красный и жёлтый свет;
  • для фиолетового свечения применяется индий-галлия нитрид;
  • для оранжевого – галлия фосфид-арсенид;
  • для синего – селенид цинка, карбид кремния или индий-галлия нитрид.

Аналогично методу получения белого свечения можно использовать люминофоры разных цветов для получения дополнительных оттенков. Так, красный люминофор позволяет выпускать розовые и пурпурные светодиоды, а зелёный – салатных оттенков. В обоих случаях люминофор наносит на основу в виде синего светодиода.

Преимущества

Особенности того, как работает светодиод, дали ему несколько важных эксплуатационных и функциональных достоинств перед другими видами преобразователей электрической энергии в световую:

  • современные светодиоды не уступают по параметрам светоотдачи металлогалогенным и натриевым газоразрядным лампам;
  • конструкция практически полностью исключает выход из строя каких-либо компонентов из-за вибрации и механических повреждений;
  • LED-светильники малоинерционные, то есть моментально достигают полной яркости после включения;
  • современный ассортимент позволяет выбирать модели со спектром от 2700 до 6500 K;
  • внушительный рабочий ресурс – до 100 000 часов;
  • ценовая доступность индикаторных светодиодов;
  • светодиодное освещение, как правило, не требует большого напряжения и сохраняет пожарную безопасность,;
  • температуры ниже 0˚С почти не сказываются на работоспособности устройств;
  • строение светодиода не предусматривает использование фосфора, ртути, других опасных веществ или ультрафиолетового излучения.

Излучающие свет полупроводниковые приборы широко используются для работы систем освещения и в качестве индикаторов электрического тока. Они относятся к электронным устройствам, работающим под действием приложенного напряжения.

Поскольку его величина незначительная, то подобные источники относятся к низковольтным приборам, обладают повышенной степенью безопасности по воздействию электрического тока на организм человека. Риски получения травм возрастают тогда, когда для их свечения используются источники повышенного напряжения, например, бытовой домашней сети, требующие включения в схему специальных блоков питания.

Отличительной чертой конструкции светодиода является более высокая механическая прочность корпуса, чем у ламп «Ильича» и люминесцентных. При правильной эксплуатации они работают долго и надежно. Их ресурс в 100 раз превышает показатели нитей накаливания, достигает ста тысяч часов.

Однако, этот показатель характерен для индикаторных конструкций. У мощных источников для освещения применяются повышенные токи, а срок эксплуатации снижается в 2÷5 раз.

Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: . Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.

Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:

Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.

Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с нетокопроводящими свойствами.

На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.

Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.

Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.

Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.

Принципы излучения света

Полупроводниковый переход p-n типа подключают к источнику постоянного напряжения в соответствии с полярностью выводов.

Внутри контактного слоя веществ p- и n-типов под его действием начинается движение свободных отрицательно заряженных электронов и дырок, которые обладают положительным знаком заряда. Эти частицы направляются к притягивающим их полюсам.

В переходном слое заряды рекомбинируют. Электроны проходят из зоны проводимости в валентную, преодолевая уровень Ферми.

За счет этого часть их энергии освобождается с выделением световых волн различного спектра и яркости. Частота волны и цветопередача зависят от вида смешанных материалов, из которых сделан .

Для излучения света внутри активной зоны полупроводника требуется соблюсти два условия:

1. пространство запрещенной зоны по ширине в активной области должно быть близко к энергии излучаемых квантов внутри видимого человеческому глазу диапазона частот;

2. чистоту материалов полупроводникового кристалла необходимо обеспечивать высокую, а количество дефектов, влияющих на процесс рекомбинации — минимально возможным.

Эта сложная техническая задача решается несколькими путями. Один из них — создание нескольких слоев p-n переходов, когда образуется сложная гетероструктура.

Влияние температуры

При увеличении уровня напряжения источника сила тока через полупроводниковый слой возрастает и свечение увеличивается: в зону рекомбинации поступает повышенное количество зарядов за единицу времени. Одновременно происходит нагрев токоведущих элементов. Его величина критична для материала внутренних тоководов и вещества p-n перехода. Излишняя температура способна их повредить, разрушить.

Внутри светодиодов энергия электрического тока переходит в световую непосредственно, без излишних процессов: не так, как у ламп с нитями накаливания. При этом образуются минимальные потери полезной мощности, обусловленные низким нагреванием токопроводящих элементов.

За счет этого создается высокая экономичность этих источников. Но, их можно применять только там, где сама конструкция защищена, блокирована от внешнего нагрева.

Особенности световых эффектов

При рекомбинации дырок и электронов в разных составах веществ p-n перехода создается неодинаковое излучение света. Его принято характеризовать параметром квантового выхода — количеством выделенных световых квантов для единичной рекомбинированной пары зарядов.

Он формируется и происходит на двух уровнях светодиода:

1. внутри самого полупроводникового перехода — внутренний;

2. в конструкции всего светодиода в целом — внешний.

На первом уровне квантовый выход у правильно выполненных монокристаллов может достигать величины, близкой к 100%. Но, для обеспечения этого показателя требуется создавать большие токи и мощный отвод тепла.

Внутри самого источника на втором уровне часть света рассеивается и поглощается элементами конструкции, чем снижает общую эффективность излучения. Максимальное значение квантового выхода здесь намного меньше. У светодиодов, испускающих красный спектр, оно достигает не более 55%, а у синих снижается еще больше — до 35%.

Виды цветовой передачи света

Современные светодиоды излучают:

  • белый свет.

Желто-зеленый, желтый и красный спектр

В основе p-n перехода используются фосфиды и арсениды галлия. Эта технология была реализована в конце 60-х годов для индикаторов электронных приборов и панелей управления транспортной техники, рекламных щитов.

Такие устройства по светоотдаче сразу обогнали основные источники света того времени — лампы накаливания и превзошли их по надежности, ресурсу и безопасности.

Голубой спектр

Излучатели синего, сине-зеленого и особенно белого спектров долго не поддавались практической реализации из-за трудностей комплексного решения двух технических задач:

1. ограниченных размеров запрещенной зоны, в которой осуществляется рекомбинация;

2. высоких требований к содержанию примесей.

Для каждой ступени повышения яркости синего спектра требовалось увеличение энергии квантов за счет расширения ширины запретной зоны.

Вопрос удалось разрешить включением в вещество полупроводника карбидов кремния SiC или нитридов. Но, у разработок первой группы оказался слишком низкий КПД и маленький выход излучения квантов для одной рекомбинированной пары зарядов.

Повысить квантовый выход помогло включение в полупроводниковый переход твердых растворов на основе селенида цинка. Но, такие светодиоды обладали повышенным электрическим сопротивлением на переходе. За счет этого они перегревались и быстро перегорали, а сложные в изготовлении конструкции отвода тепла для них эффективно не работали.

Впервые светодиод голубого свечения удалось создать при использовании тонких пленок из нитрида галлия, наносимых на сапфировую подложку.

Белый спектр

Для его получения используют одну из трех разработанных технологий:

1. смешивание цветов по методике RGB;

2. нанесение трех слоев из красного, зеленого и голубого люминофора на светодиод ультрафиолетового диапазона;

3. покрытие голубого светодиода слоями желто-зеленого и зелено-красного люминофора.

При первом способе на единой матрице размещают сразу три монокристалла, каждый из которых излучает свой спектр RGB. За счет конструкции оптической системы на основе линзы эти цвета смешивают и получают на выходе суммарный белый оттенок.

У альтернативного метода смешение цветов происходит за счет последовательного облучения ультрафиолетовым излучением трех составляющих слоев люминофора.

Особенности технологий белого спектра

Методика RGB

Она позволяет:

    задействовать в алгоритме управления освещением различные комбинации монокристаллов, подключая их поочередно вручную или автоматизированной программой;

    вызывать различные цветовые оттенки, меняющиеся по времени;

    создавать эффектные осветительные комплексы для рекламы.

Простым примером такой реализации служат . Подобные алгоритмы также широко используют дизайнеры.

Недостатками светодиодов RGB конструкции являются:

    неоднородный цвет светового пятна по центру и краям;

    неравномерный нагрев и отвод тепла с поверхности матрицы, ведущий к разным скоростям старения p-n переходов, влияющий на балансировку цветов, изменению суммарного качества белого спектра.

Эти недостатки вызваны разным расположением монокристаллов на базовой поверхности. Они сложно устраняются и настраиваются. За счет подобной технологии RGB модели относятся к наиболее сложным и дорогим разработкам.

Светодиоды с люминофором

Они проще в конструкции, дешевле в производстве, экономичнее при пересчетах на излучение единицы светового потока.

Для них характерны недостатки:

    в слое люминофора происходят потери световой энергии, которые понижают светоотдачу;

    сложность технологии нанесения равномерного слоя люминофора влияет на качество цветовой температуры;

    люминофор обладает меньшим ресурсом, чем сам светодиод и быстрее стареет при эксплуатации.

Особенности светодиодов разных конструкций

Модели с люминофором и RGB-изделия создаются для разного промышленного и бытового применения.

Способы питания

Индикаторный светодиод первых массовых выпусков потреблял около 15 мА при питании от чуть меньшей величины, чем два вольта постоянного напряжения. Современные изделия имеют повышенные характеристики: до четырех вольт и 50 мА.

Светодиоды для освещения питаются таким же напряжением, но потребляют уже несколько сотен миллиампер. Производители сейчас активно разрабатывают и проектируют устройства до 1 А.

С целью повышения эффективности светоотдачи создаются светодиодные модули, которые могут использовать последовательную подачу напряжения на каждый элемент. В таком случае его величина возрастает до 12 либо 24 вольт.

При подаче напряжения на светодиод требуется учитывать полярность. Когда она нарушена, то ток не проходит и свечения не будет. Если же используется переменный синусоидальный сигнал, то свечение происходит только при прохождении положительной полуволны. Причем его сила так же пропорционально меняется по закону появления соответствующей величины тока с полярным направлением.

Следует учитывать, что при обратном напряжении возможен пробой полупроводникового перехода. Он происходит при превышении 5 вольт на одном монокристалле.

Способы управления

Для регулировки яркости излучаемого света применяют один из двух методов управления:

1. величиной подключаемого напряжения;

Первый способ простой, но неэффективный. При снижении уровня напряжения ниже определённого порога светодиод может просто потухнуть.

Метод же ШИМ исключает подобное явление, но он значительно сложнее в технической реализации. Ток, пропускаемый через полупроводниковый переход монокристалла, подается не постоянной формой, а импульсной высокой частоты со значением от нескольких сотен до тысячи герц.

За счет изменения ширины импульсов и пауз между ними (процесс называют модуляцией) осуществляется регулировка яркости свечения в широких пределах. Формированием этих токов через монокристаллы занимаются специальные программируемые управляющие блоки со сложными алгоритмами.

Спектр излучения

Частота выходящего из светодиода излучения лежит в очень узкой области. Ее называют монохроматической. Она кардинальным образом отличается от спектра волн, исходящего от Солнца или нитей накаливания обычных осветительных ламп.

О влиянии такого освещения на человеческий глаз ведется много дискуссий. Однако, результаты серьезных научных анализов этого вопроса нам неизвестны.

Производство

При изготовлении светодиодов используется только автоматическая линия, в которой работают станки-роботы по заранее спроектированной технологии.

Физический ручной труд человека полностью исключен из производственного процесса.

Подготовленные специалисты осуществляют только контроль за правильным протеканием технологии.

Анализ качества выпускаемой продукции тоже входит в их обязанности.

Содержание:

Вопросы снижения потребляемой электроэнергии решаются не только на государственном уровне. Эта проблема актуальна и для рядовых потребителей. В связи с этим, в квартирах, офисах и других учреждениях, начинают широко внедряться не только мощные, но и экономичные источники света. Среди них все более широкое распространение получают светодиодные лампы. Устройство и принцип работы светодиодной лампы позволяет использовать ее со стандартным патроном и подключать в электрическую сеть напряжением 220 В. Для того чтобы сделать правильный выбор, нужно знать основные преимущества и особенности современных источников света.

Принцип действия светодиодных ламп

В работе светодиодных ламп используются физические процессы, которые значительно сложнее тех, что применяются в обычных лампах накаливания с металлической нитью. Суть явления заключается в появлении светового потока в точке соприкосновения двух веществ из разнородных материалов, после того как через них пропущен электрический ток.

Основной парадокс заключается в том, что каждый из используемых материалов, не является проводником электрического тока. Они относятся к категории полупроводников и способны пропускать ток лишь в одну сторону при условии их соединения между собой. В одном из них должны обязательно преобладать отрицательные заряды - электроны, а в другом - ионы с положительным зарядом.

Кроме движения электрического тока, в полупроводниках происходят и другие процессы. При переходе из одного состояния в другое происходит выделение тепловой энергии. Путем экспериментов удалось найти такие сочетания веществ, у которых наряду с выделением энергии появлялось световое излучение. В электронике все устройства, пропускающие ток лишь в одном направлении стали называться , а те из них, которые обладают способностью испускать свет, стали называться светодиодами.

В самом начале испускание фотонов полупроводниковыми соединениями охватывало только узкую часть спектра. Они могли испускать только красный, желтый или зеленый свет, с очень низкой силой свечения. Поэтому в течение длительного времени светодиоды использовались только в качестве индикаторных ламп. К настоящему времени были получены такие материалы, соединения которых позволили значительно расширить диапазон светового излучения и охватить практически весь спектр. Тем не менее, длина каких-то волн всегда преобладает в свечении. Поэтому светодиодные лампы разделяются на источники холодного света - синего и теплого свечения - преимущественно красного или желтого.

Устройство светодиодных источников света

Внешний вид светодиодных ламп практически не отличается от традиционных источников света с металлической нитью накаливания. Они оборудованы с резьбой, что позволяет использовать их с обычными патронами и не вносить изменений в электрооборудование помещений. Однако светодиодные лампы существенно отличаются сложным внутренним устройством.

В их состав входят контактный цоколь, корпус, выполняющий функцию радиатора, плата питания и управления, плата со светодиодами и прозрачный колпак. Планируя использование светодиодных ламп в сети 220 В, следует помнить, что они не смогут работать с таким током и напряжением. Для того чтобы исключить перегорание светильников, в их корпусах устанавливаются платы питания и управления, снижающие напряжение и выпрямляющие ток.

Устройство такой платы оказывает серьезное влияние на срок эксплуатации лампы. В некоторых моделях перед устанавливается лишь резистор, а в некоторых случаях недобросовестные производители обходятся без него. В результате, лампы дают очень яркое свечение, но очень быстро сгорают из-за отсутствия стабилизирующих устройств. Поэтому качественные светильники непременно оборудуются стабилизаторами, например, балластными трансформаторами. В наиболее распространенных управляющих схемах используются сглаживающие фильтры, в состав которых входит конденсатор и резистор. В наиболее дорогих моделях в блоках управления и питания используются микросхемы.

Каждый отдельно взятый светодиод излучает довольно слабый свет. Поэтому для достижения нужного светового эффекта, группируется необходимое количество элементов. С этой целью используется плата, изготовленная из диэлектрического материала, с нанесенными токопроводящими дорожками. Примерно такие же платы применяются в других электронных устройствах.

Светодиодная плата является еще и понижающим трансформатором. С этой целью все элементы включаются последовательно в общую цепь, и сетевое напряжение равномерно распределяется между ними. Единственным существенным недостатком такой схемы является обрыв всей цепочки в случае перегорания хотя-бы одного светодиода.

Защиту всей лампы от попадания влаги, пыли и других негативных воздействий обеспечивает прозрачный колпак. Некоторые свойства колпака позволяют усилить общее свечение. Дело в том что его внутренняя сторона покрыта слоем люминофора, который начинает светиться под действием энергии квантов. Поэтому снаружи поверхность колпака выглядит матовой. Люминофор обладает более широкий спектр излучения, в несколько раз превышающий аналогичный показатель у светодиодов. В результате, излучение становится сравнимо с естественным солнечным светом. Без такого покрытия светодиоды оказывают раздражающее действие на глаза, вызывая усталость и болевые ощущения.

Лучше всего изучать полезные качества, устройство и принцип действия светодиодных ламп на схемах при напряжении электрической сети 220 вольт. Чаще всего такие светильники применяются в промышленном и уличном освещении, а в бытовых условиях традиционные источники света заменяются светодиодными лампочками, работающими при низком напряжении, в основном от 12 вольт. Однако мощность лампы и ее светоотдача не имеют прямой зависимости между собой. Этот фактор следует учитывать при выборе светодиодных светильников.

В светодиодных лампах, рассчитанных на 220 вольт, в схеме отсутствует трансформатор. В связи с этим возникает дополнительная экономия при эксплуатации таких светильников. Данная особенность отличает их от светодиодных ламп с другими мощностями. Поэтому выбор светильников происходит не по мощности, а по степени освещенности, создаваемой ими.

Преимущества светодиодных ламп

В настоящее время большое значение придается экономичной и долговечной работе осветительных приборов. Поэтому на первый план выходят светильники, создающие яркое освещение с выделением минимального количества тепла и небольшим энергопотреблением. Они обладают низкой чувствительностью к перепадам тока и напряжения, могут выдерживать большое количество включений и выключений.

Всеми этими качествами в полной мере обладают светодиодные лампы. Они имеют несколько разновидностей, отличающихся по конструктивным и техническим характеристикам, что позволяет выбрать наиболее подходящий вариант. Все лампы отличаются наличием или отсутствием , степенью экологической безопасности, необходимостью в использовании выпрямителей тока и других дополнительных приборов.

Первые светодиоды (СД, СИД, LED) разработали в начале шестидесятых годов на смену миниатюрным лампам накаливания. Это были с очень слабым свечением и применялись как индикаторы включения в различных приборах.

В начале девяностых, был создан синий светодиод, следом появились зеленые, желтые и белые. Сейчас светодиод один из наиболее широко востребованных осветительных элементов. Это световое устройство в пластиковом литом корпусе (разного цвета) с двумя выводами со впаянным кристаллом.

Корпус выполняет две функции – является линзой и защитным покрытием. Питание светодиода обеспечивается током, для чего в цоколь встроен преобразователь напряжения. Яркость свечения пропорциональна напряжению.

Устройство элемента

Светодиод состоит из следующих частей:

  • основание;
  • линза;
  • катод (-);
  • анод (+);
  • кристалл (полупроводниковый чип);
  • отражатель (рассеиватель).

В основании закреплены катод и анод, сверху все устройство герметично закрыто линзой (колбой). На катоде закреплен кристалл. На контактах установлены проводники, подсоединенные к кристаллу p-n-переходом (соединительная проволока, объединяющая два проводника с разными типами проводимости).

Теплоотвод необходим для поддержания стабильной работы светодиода. В индикаторных светодиодах тепло не накапливается за счет невысокой мощности. Для осветительных – основание напрямую припаивается к поверхности для обеспечения теплоотвода.

Светодиод изнутри

Принцип работы диодов для чайников

Чтобы понять, как работает светодиод, нужно знать, что такое p-n-переход. Это область, в которой соприкасаются полупроводники p и n типа, в результате чего один тип проводимости переходит к другому. N тип содержит электроны проводимости как носители заряда. Полупроводник p типа носитель положительного заряда (дырки).

Анод (p типа) является положительным электродом, катод (n типа) это отрицательный электрод. Внешняя поверхность катода и анода содержит контактные металлические площадки с припаянными выводами. Когда к аноду подается положительный заряд электричества, а к катоду отрицательный, то на р-n переходе между кристаллом катодом начинает течь ток.

Если включение прямое, то электроны из n и области и дырки из p-области устремятся навстречу друг другу. В процессе легирования (обмена электронами) на границе дырочно – электронного перехода произойдет их обмен. Если отрицательное напряжение подается со стороны материала n-типа, то происходит прямое смещение. При рекомбинации (обмене) выделяется энергия в виде фотонов.

Чтобы поток фотонов преобразовать в видимый свет, материал подбирают так, что длина волны фотонов находится в пределах видимой области цветового спектра длиной волны от 700 до 400 нм.

Принцип работы светодиода

Виды

Существующие на сегодняшний день светодиоды бывают следующих видов :

  • индикаторные – с маленькой мощностью, для подсветки в приборах;
  • осветительные – с большой мощностью, уровень освещенности соответствует обычным (люминесцентным и вольфрамовым) источникам света.

По типу соединения индикаторные делятся на:

  • тройные AIGaAs (алюминий – галлий – мышьяк) – оранжевый и желтый свет в областях видимого цветового спектра;
  • тройные GaAsP (галлий – мышьяк – фосфор) – желто-зеленый и красный свет в областях видимого спектра;
  • двойные GaP (галлий – фосфор) – оранжевый и зеленый свет в областях видимого спектра.

Светодиодные элементы различаются по типу корпуса:

  • DIP – оснащены встроенной оптической системой из линзы, кристалла и парой контактов. Устаревшая модель самой низкой мощности, используются для подсветки игрушек, световых табло;
  • Superflux или «пиранья» – аналогичные DIP, оснащены четырьмя контактами, лучше крепятся и меньше нагреваются за счет . Используются для подсветки в автомобилях;
  • SMD – наиболее распространенный тип для множества источников света. Представляют собой чип (кристалл), смонтированный непосредственно на поверхности платы;
  • COB – усовершенствованные светодиоды SMD. Оснащены несколькими кристаллами (чипами), установленными на одну плату. Монтируются на керамические и алюминиевые основания.

Фото лампы с новыми типами светодиодов SMD

Более совершенные модели СОВ все же не всегда могут заменить SMD светодиоды.

Основные технические характеристики

Напряжение

Напряжение, необходимое для работы светодиода, это не напряжение питания, а величина падения напряжения на светодиоде. Колебания напряжения питания вызывает перегорание светодиода. Напряжение напрямую зависит от цвета.

Для нормальной работы при подключении светодиода необходимо правильно отследить ток, а не напряжение.

Сила тока

Работает светодиод на постоянном или пульсирующем токе. Поднимая или снижая интенсивность можно варьировать яркость свечения. Рабочий ток индикаторных светодиодов 20 – 40 мА. Сила тока осветительных элементов составляет от 20 мА. СОВ (на 4 чипа), например, рассчитаны на 80 мА. Одноваттные светодиоды потребляют приблизительно 300-400 мА.

Длина волны и цветовая характеристика

Излучаемый диодом цвет зависит от длины волны светового излучения. Измеряется она нанометрами (0.000000001 метра). Монохроматическое (одночастотное) излучение связано с длиной волны, перемещающейся внутри. Границы длины волны соотносятся с основными цветами определенным образом.

Цвет излучения светодиода меняется при внесении в полупроводниковый материал активных веществ. Для получения светодиодов красного цвета в качестве полупроводников используется алюминий индий – галлий (AllnGaP), для цветов сине – голубого и зеленого спектра – индий – нитрид галлия (InGaN).Чтобы получить, например, белый свет, кристалл синего светодиода покрывают тонким слоем люминофора, который излучает жёлтый и красный свет под действием синего спектра.

В результате смешивания цветов получается белый свет. Белые светодиоды определяются цветовой температурой, измеряемой в К.

Лампы с диодами могут быть разных цветов

Светодиодная плата

Плата предназначена для крепления светодиодов в любом необходимом количестве и положении. Форма платы бывает:

  • прямоугольная;
  • линейка;
  • круглая;
  • квадратная;
  • звездчатая
  • произвольная.

Светодиодная плата изготавливается из диэлектрического материала. Основной функцией ее является теплоотвод.

Виды плат:

  • металлические (односторонние, двухсторонние и многослойные);
  • изолированные металлические подложки (односторонние, двухсторонние и многослойные, жестко – гибкие).

Платы, изготовленные из алюминия, не нуждаются в вентиляторах для принудительного охлаждения. Все элементы конструкции обретают более продолжительный срок службы за счет отсутствия перегрева.

Дополнительную информацию об история возникновения и принципах функционирования светодиодных элементов смотрите на видео:

Светодиоды это один из новейших источников освещения, имеет широкий спектр применения и большие перспективы. Благодаря соотношению всех параметров светодиодный тип освещения может стать ведущим среди множества осветительных приборов и разнообразных источников света.

Современное поколение стремится минимизировать свои расходы. Преимуществом светодиодного светильника является малое потребление электроэнергии. При потребляемой мощности в 10 Вт светодиодная лампа дает такую же освещенность, как лампа накаливания в 100 Вт. Этот показатель также больше в 2 раза, чем в люминесцентных лампах.

Еще одним плюсом является намного больший в сравнении с лампой накаливания рабочий ресурс. Сочетание малого потребления мощности с высокой долговечностью компенсируют высокую стоимость.

В этой статье рассмотрено устройство светодиодной лампы, которая состоит из таких элементов:

  • рассеиватель;
  • светодиод;
  • радиатор;
  • драйвер;
  • цоколь.

Устройство и принцип работы

Конструкция светодиодной лампы довольно сложная. Рассмотрим ее строение и назначение основных элементов.

Источником света в светодиодной лампе является светоизолирующий диод, состоящий из полупроводникового кристалла, имеющего два вывода (катод и анод) и оптической системы. Далее по тексту будет использована аббревиатура СД или LED.

Рассмотрим принцип работы светодиодной лампы. При прохождении электрического тока через полупроводник в прямом направлении, носители заряда (электроны и дырки) осуществляют рекомбинацию. В результате этого происходит оптическое излучение фотонов (из-за перехода электронов на другой энергетический уровень).

Также в лампе находится драйвер (специальная микросхема), который обеспечивает питание светодиода. Радиатор (система охлаждения) собирает и выводит излишнее тепло. Рассеиватель минимизирует потери света.

На схемах светодиоды условно обозначаются как диоды со стрелками, которые обозначают оптическое излучение (рис. 2).

Простейшая схема LED-лампы

Особенностью схемы, изображенной на рис. 3, является 2 светодиода, работающих встречно-параллельно. В этом варианте расположения каждый светодиод выполняет защитную функцию. Препятствует поражению обратным напряжением сети другого светодиода, а также увеличивает частоту пульсации LED-лампы до значения 100 Гц. Такой показатель частоты будет благоприятно влиять на ваше зрение.

Один из СД можно заменить на выпрямительный диод, выполняющий защитную функцию. Включается он в схему в направлении заменяемого СД. В этой компоновке элементов частота пульсации СД равняется 25 Гц.
Резистор R1 должен быть мощностью не меньше 5 Вт и сопротивления 10-11 кОм. Тогда протекающий ток в СД будет равен 20 мА. Сопротивление R1 выбирается согласно величине номинального прямого тока СД.
Данную лампу возможно сделать в корпусе испорченной компактной ЛЛ.

Простейшая схема LED-лампы

Строение светодиодных устройств различных фирм-производителей

Устройство СД-ламп напряжением 220 В различных фирм-производителей имеет небольшие отличия. Весь выбор светодиодных ламп условно разделяется на несколько групп: брендовые, низкого качества и филаментные.

Брендовые продукты

Конструктивное исполнение СД-лампы от лидирующих брендов, производящих СД-изделия, обязательно включает в себя:

  • рассеиватель;
  • чипы;
  • печатная плата из алюминия на теплопроводимой пасте (гарант оптимальной температуры режима работы чипов);
  • драйвер, построенный по схеме гальванически развязанного широтно-импульсного модулятора стабилизатора тока;
  • основание цоколя, выполненное из полиэтилентерефталата. Работает как надежная защита от пробивания электрическим током;
  • латунный цоколь с никелевым покрытием. Антикоррозийный материал, создающий надежный контакт с патроном.

LED-лампа в разрезе

Главным видимым отличием лампы из этой группы является объемный радиатор, окрашенный белым полимером. Его поверхность может быть как гладкой, так и ребристой. Если сравнивать такую светодиодную лампу с более дешевыми представителями, то она имеет большую массу.

Материалом рассеивателя может быть стекло или пластик. Неизменной остается его форма – полусфера. Элементами крепежа рассеивателя к радиатору могут послужить защелки или усадка на герметик. Под ним расположена плата с SMD-светодиодами, надежно зафиксированная на радиаторе. Еще ниже размещена плата драйвера. В состав схемы драйвера входят:

  • импульсный трансформатор,
  • микросхемы,
  • полярные конденсаторы,
  • огромное количество планарных элементов.

Она имеет большую плотность манжета. Драйвер находится под корпусом лампы и является соединителем цоколя и радиатора. Связь блока драйвера с платой осуществляется посредством пайки или контактора.

Изделия низкого качества

Отличительной чертой ламп низкого качества является возможное отсутствие таких элементов, как радиатор и драйвер. Функцию драйвера выполняет простейший блок питания. Он не может преобразовать переменный ток в постоянный. Блок питания расположен в центральной части платы рядом со светодиодами. Перфорация корпуса выполняет роль радиатора в лампе. Из-за малоэффективной функции охлаждения перегрев и выход из строя СД неизбежны.

Крепеж платы к корпусу производится за счет защелки. Электрическое соединение платы с цоколем осуществляется за счет пайки. Эта конструкция является простой, но не может обеспечить надежность и продолжительную работу светодиодным лампочкам.

Филаментные лампы (ФЛ)

Разработка светодиодных ламп не стоит на месте. Следующей новинкой на рынке светотехнических изделий стала филаментная лампа.


Дословно с английского «филамент» означает нить. Визуально эта лампа похожа на лампу накаливания. Отличительной чертой ФЛ является то, что она не требует дополнительного теплоотвода. Ее использование в быту имеет как практическое, так и эстетическое применение.

Подробнее рассмотрим строение филаментной лампы. Количество светодиодных нитей (основных элементов ФЛ) прямо пропорционально мощности лампы. Тонкий стержень из стекла, на котором расположены SMD-светодиоды, имеющие электрическую связь между собой – это и есть филамент. Желтый цвет ФЛ обусловлен нанесенным по всей длине люминофором. Теплоотвод в этом изделии осуществляется через колбу, заполненную газовой смесью.

Нередко фирмы-производители вынуждены располагать низкокачественный модуль питания в цоколе ФЛ. Это связано с недостатками конструкции филаментной лампы, что приводит к увеличению коэффициента пульсации, который отрицательно влияет на зрение. Чтобы устранить этот недостаток, ведется работа над модернизацией конструкции ФЛ. Для размещения драйвера высокого качества делается вставка из пластика в виде кольца. Она располагается между колбой и цоколем.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника