Геометрическая оптика построение изображений. Построение изображений, которые дает тонкая линза. Формула тонкой линзы

Изображения:

1. Действительные – те изображения, которые мы получаем в результате пересечения лучей, прошедших через линзу. Они получаются в собирающей линзе;

2. Мнимые – изображения, образуемые расходящимися пучками, лучи которых на самом деле не пересекаются между собой, а пересекаются их продолжения, проведенные в обратном направлении.

Собирающая линза может создавать как действительное, так и мнимое изображение.

Рассеивающая линза создает только мнимое изображение.

Собирающая линза

Чтобы построить изображение предмета, нужно пустить два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

В результате построения получается уменьшенное, перевернутое, действительное изображение (см. Рис. 1).

Рис. 1. Если предмет располагается за двойным фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет через линзу, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается изображение, высота которого совпадает с высотой предмета. Изображение является перевернутым и действительным (Рис. 2).

Рис. 2. Если предмет располагается в точке двойного фокуса

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы. Через линзу он проходит, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается увеличенное, перевернутое, действительное изображение (см. Рис. 3).

Рис. 3. Если предмет располагается в пространстве между фокусом и двойным фокусом

Так устроен проекционный аппарат. Кадр киноленты располагается вблизи фокуса, тем самым получается большое увеличение.

Вывод: по мере приближения предмета к линзе изменяется размер изображения.

Когда предмет располагается далеко от линзы – изображение уменьшенное. При приближении предмета изображение увеличивается. Максимальным изображение будет тогда, когда предмет находится вблизи фокуса линзы.

Предмет не создаст никакого изображения (изображение на бесконечности). Так как лучи, попадая на линзу, преломляются и идут параллельно друг другу (см. Рис. 4).

Рис. 4. Если предмет находится в фокальной плоскости

5. Если предмет располагается между линзой и фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломится и пройдет через точку фокуса. Проходя через линзу, лучи расходятся. Поэтому изображение будет сформировано с той же стороны, что и сам предмет, на пересечении не самих линий, а их продолжений.

В результате построения получается увеличенное, прямое, мнимое изображение (см. Рис. 5).

Рис. 5. Если предмет располагается между линзой и фокусом

Таким образом устроен микроскоп.

Вывод(см. Рис. 6):

Рис. 6. Вывод

На основе таблицы можно построить графики зависимости изображения от расположения предмета (см. Рис. 7).

Рис. 7. График зависимости изображения от расположения предмета

График увеличения (см. Рис. 8).

Рис. 8. График увеличения

Построение изображения светящейся точки, которая располагается на главной оптической оси.

Чтобы построить изображение точки, нужно взять луч и направить его произвольно на линзу. Построить побочную оптическую ось параллельно лучу, проходящую через оптический центр. В том месте, где произойдет пересечение фокальной плоскости и побочной оптической оси, и будет второй фокус. В эту точку пойдет преломленный луч после линзы. На пересечении луча с главной оптической осью получается изображение светящейся точки (см. Рис. 9).

Рис. 9. График изображения светящейся тчки

Рассеивающая линза

Предмет располагается перед рассеивающей линзой.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется таким образом, что продолжение этого луча пойдет в фокус. А второй луч, который проходит через оптический центр, пересекает продолжение первого луча в точке А’, – это и будет изображение верхней точки предмета.

Таким же образом строится изображение нижней точки предмета.

В результате получается прямое, уменьшенное, мнимое изображение (см. Рис. 10).

Рис. 10. График рассеивающей линзы

При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение.

Собирающая линза — это оптическая система, которая представляет собой подобие сплющенной сферы, у которой толщина краев меньше, чем оптического центра. Для того, чтобы правильно произвести построение изображения в собирающей линзе нужно учитывать несколько важных моментов, которые сыграют ключевую роль как в построении, так и в полученном изображении предмета. Многие современные приборы работают на этих простых принципах, используя свойства собирающей линзы и геометрию построения изображения предмета.

Появилось еще в 20 веке, слово пришло с латыни. Обозначало стекло с выпуклым или вогнутым центром. Спустя небольшой промежуток времени стало активно применяться в физике и получило свое массовое распространение с помощью науки и приборам, которые были сделаны на ее основе. Схема собирающей линзы представляет собой систему из двух сплюснутых у краев полусфер, которые соединены между собой ровной стороной и имеют одинаковый центр.

Фокус собирающей линзы — это место, где все проходящие лучи света пересекаются. Эта точка является очень важной при построении.

Фокусное расстояние собирающей линзы — это не что иное, как отрезок от принятого центра линзы до фокуса.

Из-за того, где именно на оптической оси будет располагаться предмет, который предстоит построить, можно получить несколько типичных вариантов. Первое, что следует рассмотреть, это случай, когда предмет находится прямо на фокусе. В этом случае построить изображение просто не удастся, так как лучи будут идти параллельно друг другу. Поэтому получить решение невозможно. Это своего рода аномалия в построении изображения предмета, которая обосновывается геометрией.


Построение изображения тонкой собирающей линзой не составляет особого труда, если использовать правильный подход и алгоритм, благодаря которому можно получить изображение любого предмета. Для построения изображения предмета достаточно двух основных точек, используя которые не составит труда спроектировать полученное в результате преломления света в собирающей линзе изображение. Стоит отметить главные моменты при построении, без которых невозможно будет обойтись:

  • Линия, проходящая через центр линзы считается лучом, который во время прохождения через линзу изменяет свое направление крайне незначительно
  • Линия, проведенная параллельно ее главной оптической оси, которая после преломления в линзе проходит через фокус собирающей линзы

Обратите внимание, что информация о том, как рассчитывается формула оптической линзы доступна по этому адресу: .

Построение изображения в собирающей линзе фото

Ниже приводим фотографии по теме статьи «Построение изображения в собирающей линзе». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.

1. Виды линз. Главная оптическая ось линзы

Линзой называют прозрачное для света тело, ограниченное двумя сферическими поверхностями (одна из поверхностей может быть плоской). Линзы, у которых середина толще, чем
края, называют выпуклыми, а те, у которых края толще середины, - вогнутыми. Выпуклая линза, изготовленная из вещества с оптической плотностью большей, чем у среды, в которой линза
находится, является собирающей, а вогнутая линза при тех же условиях - рассеивающей. Различные виды линз показаны на рис. 1: 1 - двояковыпуклая, 2 - двояковогнутая, 3 - плосковыпуклая, 4 - плосковогнутая, 3,4 - выпукловогнутая и вогнутовыпуклая.



Рис. 1. Линзы

Прямую О 1 О 2 , проходящую через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы.

2. Тонкая линза, ее оптический центр.
Побочные оптические оси

Линзу, у которой толщина l =|С 1 С 2 | (см. рис. 1) пренебрежимо мала по сравнению с радиусами кривизны R 1 и R 2 поверхностей линзы и расстоянием d от предмета до линзы, называют тонкой. В тонкой линзе точки С 1 и С 2 , являющиеся вершинами шаровых сегментов, расположены настолько близко друг к другу, что их можно принять за одну точку. Эту лежащую на главной оптической оси точку О, через которую световые лучи проходят, не изменяя своего направления, называют оптическим центром тонкой линзы. Любую прямую, проходящую через оптический центр линзы, называют ее оптической осью. Все оптические оси, кроме главной, называют побочными оптическими осями.

Световые лучи, идущие вблизи главной оптической оси, называют параксиальными (приосевыми).

3. Главные фокусы и фокусные
расстояния линзы

Точку F на главной оптической оси, в которой пересекаются после преломления приосевые лучи, падающие на линзу параллельно главной оптической оси (или же продолжения этих преломленных лучей), называют главным фокусом линзы (рис. 2 и 3). Любая линза имеет два главных фокуса, которые расположены по обе стороны от нее симметрично ее оптическому центру.


Рис. 2 Рис. 3

У собирающей линзы (рис. 2) фокусы действительные, а у рассеивающей (рис. 3) - мнимые. Расстояние |ОР| = F от оптического центра линзы до ее главного фокуса называют фокусным. У собирающей линзы фокусное расстояние считают положительным, а у рассеивающей линзы - отрицательным.

4. Фокальные плоскости линзы, их свойства

Плоскость, проходящая через главный фокус тонкой линзы перпендикулярно главной оптической оси, называют фокальной. У каждой линзы есть две фокальные плоскости (М 1 М 2 и М 3 М 4 на рис. 2 и 3), которые расположены по обе стороны от линзы.

Лучи света, падающие на собирающую линзу параллельно какой-либо ее побочной оптической оси, после преломления в линзе сходятся в точке пересечения этой оси с фокальной плоскостью (в точке F’ на рис. 2). Эту точку называют побочным фокусом.

Формулы линзы

5.Оптическая сила линзы

Величину D, обратную фокусному расстоянию линзы, называют оптической силой линзы:

D =1/F (1)

У собирающей линзы F>0, следовательно, D>0, а у рассеивающей линзы F<0, следовательно, D<0, т.е. оптическая сила собирающей линзы положительна, а рассеивающей - отрицательна.

За единицу оптической силы принимают оптическую силу такой линзы, фокусное расстояние которой равно 1 м; эту единицу называют диоптрией (дптр):

1 дптр = = 1 м -1

6. Вывод формулы тонкой линзы на основе

геометрического построения хода лучей

Пусть перед собирающей линзой находится светящийся предмет АВ (рис. 4). Для построения изображения этого предмета необходимо построить изображения его крайних точек, причем удобно выбирать такие лучи, построение которых окажется наиболее простым. Таких лучей, в общем случае, может быть три:

а) луч АС, параллельный главной оптической оси, после преломления проходит через главный фокус линзы, т.е. идет по прямой CFA 1 ;


Рис. 4

б) луч АО, идущий через оптический центр линзы не преломляется и тоже приходит в точку А 1 ;

в) луч АВ, идущий через передний фокус линзы, после преломления идет параллельно главной оптической оси по прямой DA 1 .

Все три указанных луча где получается действительное изображение точки А. Опустив перпендикуляр из точки А 1 на главную оптическую ось, находим точку В 1 , являющуюся изображением точки В. Для построения изображения светящейся точки достаточно использовать два из трех перечисленных лучей.

Введем следующие обозначения |OB| = d – расстояние предмета от линзы, |OB 1 | = f – расстояние от линзы до изображения предмета, |OF| = F – фокусное расстояние линзы.

Используя рис. 4, выведем формулу тонкой линзы. Из подобия треугольников АОВ и А 1 ОВ 1 следует, что

(2)

Из подобия треугольников COF и A 1 FB 1 следует, что

а так как |AB| = |CO|, то


(4)

Из формул (2) и (3) следует, что


(5)

Поскольку |OB1|= f, |OB| = d, |FB1| = f – F и |OF| = F, формула (5) принимает вид f/d = (f – F)/F, откуда

FF = df – dF (6)

Разделив почленно формулу (6) на произведение dfF, получим


(7)

откуда


(8)

С учетом (1) получим


(9)

Соотношения (8) и (9) называют формулой тонкой собирающей линзы.

У рассеивающей линзы F<0, поэтому формула тонкой рассеивающей линзы имеет вид



(10)

7. Зависимость оптической силы линзы от кривизны ее поверхностей
и показателя преломления

Фокусное расстояние F и оптическая сила D тонкой линзы зависят от радиусов кривизны R 1 и R 2 ее поверхностей и относительного показателя преломления n 12 вещества линзы относительно окружающей среды. Эта зависимость выражается формулой

(11)

С учетом (11) формула тонкой линзы (9) принимает вид


(12)

Если одна из поверхностей линзы плоская (для нее R= ∞), то соответствующий ей член 1/R в формуле (12) равен нулю. Если поверхность вогнутая, то соответствующий ей член 1/R входит в эту формулу со знаком минус.

Знак правой части формулыm (12) определяет оптические свойства линзы. Если он положителен, то линза является собирающей, а если отрицателен - рассеивающей. Например, у двояковыпуклой стеклянной линзы, находящейся в воздухе, (n 12 - 1) >0 и

т.е. правая часть формулы (12) положительна. Поэтому такая линза в воздухе является собирающей. Если же ту же самую линзу поместить в прозрачную среду с оптической плотностью
большей, чем у стекла (например, в сероуглерод), то она станет рассеивающей, поскольку в этом случае у нее (n 12 - 1) <0 и, хотя
, знак у правой части формулы/(17.44) станет
отрицательным.

8.Линейное увеличение линзы

Размер изображения, создаваемого линзой, изменяется в зависимости от положения предмета относительно линзы. Отношение размера изображения к размеру изображаемого предмета называют линейным увеличением и обозначают Г.

Обозначим h размер предмета АВ и H - размер А 1 В 2 - его изображения. Тогда из формулы (2) следует, что

(13)

10. Построение изображений в собирающей линзе

В зависимости от расстояния d предмета от линзы могут быть шесть различных случаев построения изображения этого предмета:

а) d =∞. В данном случае световые лучи от предмета падают на линзу параллельно либо главной, либо какой-нибудь побочной оптической оси. Такой случай изображен на рис. 2, из которого видно, что если предмет бесконечно удален от линзы, то изображение предмета действительное, в виде точки, находится в фокусе линзы (главном или побочном);

б) 2F < d <∞. Предмет находится на конечном расстоянии от линзы большем, чем ее удвоенное фокусное расстояние (см. рис. 3). Изображение предмета действительное, перевернутое, уменьшенное находится между фокусом и точкой, отстоящей от линзы на двойное фокусное расстояние. Проверить правильность построения данного изображения можно
путем расчета. Пусть d= 3F, h = 2 см. Из формулы (8) следует, что

(14)

Так как f > 0, изображение действительное. Оно находится за линзой на расстоянии ОВ1=1,5F. Всякое действительное изображение является перевернутым. Из формулы
(13) следует, что

; H = 1 см

т. е. изображение уменьшенное. Аналогично с помощью расчета, основанного на формулах (8), (10) и (13), можно проверить правильность построения любого изображения в линзе;

в) d=2F. Предмет находится на двойном фокусном расстоянии от линзы (рис. 5). Изображение предмета действительное, перевернутое, равное предмету, находится за линзой на
двойном фокусном расстоянии от нее;


Рис. 5

г) F


Рис. 6

д) d= F. Предмет находится в фокусе линзы (рис. 7). В этом случае изображения предмета не существует (оно находится в бесконечности), поскольку лучи от каждой точки предмета после преломления в линзе идут параллельным пучком;


Рис. 7

е) dболее далеком расстоянии.


Рис. 8

11. Построение изображений в рассеивающей линзе

Построим изображение предмета при двух различных его расстояниях от линзы (рис. 9). Из рисунка видно, что на каком бы расстоянии ни находился предмет от рассеивающей линзы, изображение предмета мнимое, прямое, уменьшенное находится между линзой и ее фокусом
со стороны изображаемого предмета.


Рис. 9

Построение изображений в линзах с помощью побочных осей и фокальной плоскости

(Построение изображения точки, лежащей на главной оптической оси)


Рис. 10

Пусть светящаяся точка S находится на главной оптической оси собирающей линзы (рис. 10). Чтобы найти, где образуется ее изображение S’, проведем из точки S два луча: луч SO вдоль главной оптической оси (он проходит через оптический центр линзы, не преломляясь) и луч SВ, падающий на линзу в произвольной точке В.

Начертим фокальную плоскость ММ 1 линзы и проведем побочную ось ОF’, параллельную лучу SВ (показана штриховой линией). Она пересечется с фокальной плоскостью в точке S’.
Как отмечалось в п. 4, через эту точку F должен пройти луч после преломления в точке В. Этот луч ВF’S’ пересекается с лучом SOS’ в точке S’, которая и является изображением светящейся точки S.

Построение изображения предмета, размер которого больше линзы

Пусть предмет АВ расположен на конечном расстоянии от линзы (рис. 11). Чтобы найти, где получится изображение этого предмета, проведем из точки А два луча: луч АОА 1 , прохоходящий через оптический центр линзы без преломления, и луч АС, падающий на линзу в произвольной точке С. Начертим фокальную плоскость ММ 1 линзы и проведем побочную ось ОF’, параллельную лучу АС (показана штриховой линией). Она пересечется с фокальной плоскостью в точке F’.


Рис. 11

Через эту точку F’ пройдет луч, преломившийся в точке С. Этот луч СF’А 1 пересекается с лучом АОА 1 в точке А 1 , которая и является изображением светящейся точки А. Чтобы получить все изображение А 1 В 1 предмета АВ, опускаем перпендикуляр из точки А 1 на главную оптическую ось.

Лупа

Известно, что для того, чтобы увидеть на предмете мелкие детали, их нужно рассматривать под большим углом зрения, но увеличение этого угла ограничено пределом аккомодационных возможностей глаза. Увеличить угол зрения (сохраняя расстояние наилучшего зрения d o) можно, используя оптические приборы {лупы, микроскопы}.

Лупой называют короткофокусную двояковыпуклую линзу или систему линз, действующих как одна собирающая линза обычно фокусное расстояние лупы не превышает 10см).


Рис. 12

Ход лучей в лупе покаpан на рис. 12. Лупу помещают близко к глазу,
а рассматриваемый предмет AВ=A 1 В 1 располагают между лупой и ее передним фокусом, чуть ближе последнего. Подбирают положение лупы между глазом и предметом так, чтобы видеть резкое изображение предмета. Это изображение А 2 В 2 получается мнимым, прямым, увеличенным и находится на расстоянии наилучшего зрения |ОВ|=d о от глаза.

Как видно из рис. 12, использование лупы приводит к увеличению угла зрения, под которым глаз рассматривает предмет. Действительно, когда предмет находился в положении АВ и рассматривался невооруженным глазом, угол зрения был φ 1 . Предмет поместили между фокусом и оптическим центром лупы в положение А 1 В 1 , и угол зрения стал φ 2 . Поскольку φ 2 > φ 1 , это
значит, что с помощью лупы можно рассмотреть на предмете более мелкие детали, чем невооруженным глазом.

Из рис. 12 видно также, что линейное увеличение лупы


Так как |OB 2 |=d o , а |ОВ|≈F (фокусному расстоянию лупы), то

Г=d о /F,

следовательно, увеличение, даваемое лупой, равно отношению расстояния наилучшего зрения к фокусному расстоянию лупы.

Микроскоп

Микроскопом называют оптический прибор, служащий для рассматривания очень мелких предметов (в том числе невидимых невооруженным глазом) под большим углом зрения.

Микроскоп состоит из двух собирающих линз - короткофокусного объектива и длиннофокусного окуляра, расстояние между которыми может изменяться. Следовательно, F 1 <

Ход лучей в микроскопе показан на рис. 13. Объектив создает действительное, перевернутое, увеличенное промежуточное изображение А 1 В 2 предмета АВ.


Рис. 13

282.

Линейное увеличение

С помощью микрометриче-
ского винта окуляр помещают
относительно объектива таким
образом, чтобы это промежу-
точное изображение А\В\ ока-
залось между передним фоку-
сом Рч и оптическим центром
Оч окуляра. Тогда окуляр
становится лупой и создает мни-
мое, прямое (относительно про-
межуточного) и увеличенное
изображение ЛчВч предмета ав.
Его положение можно найти,
используя свойства фокальной
плоскости и побочных осей (ось
О^Р’ проводят параллельно лу-
чу 1, а ось ОчР» - параллель-
но лучу 2). Как видно из
рис. 282, использование микро-
скопа приводит к значительно-
му увеличению угла зрения,
под которым глаз рассматрива-
ет предмет (фа ^> фО, что поз-
воляет видеть детали, не ви-
димые невооруженным глазом.
микроскопа

\АМ 1Л2Й2 И|й||

Г=

\АВ\ |Л,5,| \АВ\

Так как \А^Вч\/\А\В\\== Гок-линейное увеличение окуляра и
\А\В\\/\АВ\== Гоб -линейное увеличение объектива, то линейное
увеличение микроскопа

(17.62)

Г== Гоб Гок.

Из рис. 282 видно, что
» |Л1Й,1 |0,Я||

\АВ\ 150,1 ‘

где 10,5, | = |0/7, | +1/^21+1ад1.

Обозначим 6 расстояние между задним фокусом объектива
и передним фокусом окуляра, т. е. 6 = \Р\Р’г\. Так как 6 ^> \ОР\\
и 6 » \Р2В\, то |0|5|1 ^ 6. Поскольку |05|| ^ Роб, получаем

б

Роб

(17.63)

Линейное увеличение окуляра определяют по той же формуле
(17.61), что и увеличение лупы, т. е.

384

Гок=

а»

Гок

(17.64)

(17.65)

Подставив (17.63) и (17.64) в формулу (17.62), получим

бйо

Г==

/^об/м

Формула (17.65) определяет линейное увеличение микроскопа.

Изображением точки S в линзе будет точка пересечения всех преломленных лучей или их продолжений. В первом случае изображение действительное, во втором - мнимое. Как всегда, чтобы найти точку пересечения всех лучей, достаточно построить любые два. Мы можем это сделать, пользуясь вторым законом преломления. Для этого надо измерить угол падения произвольного луча, сосчитать угол преломления, построить преломленный луч, который под каким-то углом упадет на другую грань линзы. Измерив этот угол падения, надо вычислить новый угол преломления и построить выходящий луч. Как видите, работа достаточно трудоемкая, поэтому обычно ее избегают. По известным свойствам линз можно построить три луча без всяких вычислений. Луч, падающий параллельно какой-либо оптической оси, после двойного преломления пройдет через действительный фокус или его продолжения пройдет через мнимый фокус. По закону обратимости луч, падающий по направлению на соответствующий фокус, после двойного преломления выйдет параллельно определенной оптической оси. Наконец, через оптический центр линзы луч пройдет, не отклоняясь.

На рис. 7 построено изображения точки S в собирающей линзе, на рис. 8 - в рассеивающей. При таких построениях изображают главную оптическую ось и на ней показывают фокусные расстояния F (расстояния от главных фокусов или от фокальных плоскостей до оптического центра линзы) и двойные фокусные расстояния (для собирающих линз). Затем ищут точку пересечения преломленных лучей (или их продолжений), используя любые два из вышеперечисленных.

Обычно вызывает затруднение построение изображения точки, расположенной на главной оптической оси. Для такого построения нужно взять любой луч, который будет параллелен какой-то побочной оптической оси (пунктир на рис. 9). После двойного преломления он пройдет через побочный фокус, который лежит в точке пересечения этой побочной оси и фокальной плоскости. В качестве второго луча удобно использовать луч, идущий без преломления вдоль главной оптической оси.

Рис. 7


Рис. 8


Рис. 9

На рис. 10 изображены две собирающие линзы. Вторая «лучше» собирает лучи, ближе их сводит, она «сильнее». Оптической силой линзы называется величина, обратная фокусному расстоянию:

Выражается оптическая сила линзы в диоптриях (дптр).



Рис. 10

Одна диоптрия - оптическая сила такой линзы, фокусное расстояние которой 1 м.

У собирающих линз положительная оптическая сила, у рассеивающих - отрицательная.

Построение изображения предмета в собирающей линзе сводится к построению его крайних точек. В качестве предмета выберем стрелку АВ (рис. 11). Изображение точки A построено, как на рис. 7, точка B 1 может быть найдена, как на рис 19. Введем обозначение (аналогичные введенным при рассмотрении зеркал): расстояние от предмета до линзы |BO | = d ; расстояние от предмета до линзы изображения |BO 1 | = f , фокусное расстояние |OF | = F . Из подобия треугольников A 1 B 1 O и АВО (по равным острым - вертикальным - углам прямоугольные треугольники подобны) . Из подобия треугольников A 1 B 1 F и DOF (по тому же признаку подобия) . Следовательно,

Или fF = df dF .

Разделив уравнение почленно на dFf и перенеся отрицательный член в другую сторону равенства, получим:

Мы вывели формулу линзы, аналогичную формуле зеркала.

В случае рассеивающей линзы (рис. 22) «работает» ближний мнимый фокус. Обратите внимание на то, что точка А1 является точкой пересечения продолжения преломленных лучей, а не точкой пересечения преломленного луча FD и падающего луча AO.


Рис. 11


Рис. 12

Для доказательства рассмотрите луч, падающий из точки А по направлению на дальний фокус. После двойного преломления он выйдет из линзы параллельно главной оптической оси, так что его продолжение пройдет через точку А1. Изображение точки В может быть построено аналогично рис. 9. Из подобия соответствующих треугольников ; ; fF = dF df или

Можно провести исследования формулы линзы, аналогичное исследованию формулы зеркала.

Как изменится изображение предмета, если его половина линзы разбилась? Изображение станет менее интенсивным, но ни его форма, ни расположение не изменятся. Аналогично изображение предмета в любом кусочке линзы или зеркала.

Для построения изображения точки в идеальной системе достаточно построить любые два луча, идущие от этой точки. Точка пересечения выходящих лучей, соответствующих этим двум падающим, будет искомым изображением данной точки.


Рис. 3.62. а - построение изображения A 1 S 1 предмета в собирающей линзе: предмет AВ рас­положен между фокусным и двойным фокусным расстояниями; б - ход лучей в проекционном аппарате

Изображение предмета в этом случае будет увеличенным, перевернутым, действительным. Такое изображение позволяет получить проекционная аппаратура на экране (рис. 3.62, б).

Если поместить предмет между фокусом и линзой, то изображения на экране мы не увидим. Ho, посмотрев на предмет сквозь линзу, увидим изоб­ражение предмета - оно будет прямое, увеличенное.

Используя «удобные лучи» (рис. 3.63, а), увидим, что после преломле­ния в линзе реальные лучи, вышедшие из точки В, пойдут расходящимся пучком . Однако их продолжения пересекутся в точке B 1 . Напоминаем, что в этом случае мы имеем дело с мнимым изображением предмета. То есть если предмет расположен между фокусом и линзой, то его изображение бу­дет увеличенным, прямым, мнимым, расположенным с той же стороны от линзы, что и сам предмет. Такое изображение можно получить с помощью лупы (рис. 3.63, б) или микроскопа.



Рис. 3.63. а - построение изображения A 1 S 1 предмета в собирающей линзе: предмет AВ распо­ложен между линзой и ее фокусом; б - с помощью лупы можно получить увеличенное изображе­ние предмета и рассмотреть его подробнее


Рис. 3.64 Построение изображений A 1 S 1 предмета, создаваемых рассеивающей линзой, в случае различного расположения предмета AB относительно линзы

Итак, размеры и вид изображения, полученного с помощью собирающей линзы, зависят от расстояния между предметом и этой линзой.

Внимательно рассмотрите рис. 3.64, на котором показано построение изображения предмета, полученного с помощью рассеивающей линзы. По­строение показывает, что рассеивающая линза всегда дает мнимое, умень­шенное, прямое изображение предмета, расположенное с той же стороны от линзы, что и сам предмет.

Мы часто сталкиваемся с ситуацией, когда предмет значительно больше, чем линза (рис. 3.65), или когда часть линзы закрыта непрозрачным экра­ном (например, линза объектива фотоаппарата). Как создается изображение в этих случаях? На рисунке видно, что лучи 2 и 3 при этом не проходят через линзу. Однако мы, как и раньше, можем использовать эти лучи для построения изображения, получаемого с помощью линзы. Поскольку реаль­ные лучи, вышедшие из точки В, после преломления в линзе пересекаются в одной точке - B 1 , то «удобные лучи», с помощью которых мы строим изображение, тоже пересеклись бы в точке B 1 .

3. Знакомимся с формулой тонкой линзы

Существует математическая зависимость между расстоянием d от предмета до линзы, расстоянием f от изображения предмета до линзы и фо­кусным расстоянием F линзы. Эта зависимость называется формулой тон­кой линзы и записывается так:


Рис. 3.65. Построение изображения A 1 B 1 предмета в случае, когда предмет AB значительно боль­ше линзы

Пользуясь формулой тонкой линзы для решения задач, следует иметь в виду: расстояние f (от изображения предмета до линзы) следует брать со знаком минус, если изображение мнимое, и со знаком плюс, если изобра­жение действительное; фокусное расстояние F собирающей линзы положительное, а рассеивающей - отрицательное.

4. Учимся решать задачи

Рассматривая монету с помощью лупы, оптическая сила которой +5 дптр, мальчик расположил монету на расстоянии 2 см от лупы. Определите, на каком расстоянии от лупы мальчик наблюдал изоб­ражение монеты. Каким будет это изображение - действительным или мнимым?



  • Подводим итоги

В зависимости от вида линзы (собирающая или рассеивающая) и мес­тоположения предмета относительно этой линзы получают разные изобра­жения предмета с помощью линзы (см. таблицу):

Таким образом, по типу изображения можно судить как о виде линзы, так и о местоположении предмета относительно нее.

Расстояние d от предмета до линзы, расстояние f от изображения до лин­зы и фокусное расстояние F связаны формулой тонкой линзы:

  • Контрольные вопросы

1. От чего зависят характеристики изображений, получаемых с по­мощью собирающей линзы?

2. Какие лучи удобно использовать для построения изображения, получаемого с помощью линзы?

3. Можно ли получить действительное изображение с помощью собирающей лин­зы? рассеивающей линзы?

4. Можно ли получить мнимое изображе­ние с помощью собирающей линзы? рассеивающей линзы?

5. С по­мощью линзы получено изображение какого-то предмета. В каком случае его можно увидеть на экране - когда это изображение являет­ся действительным или когда оно мнимое?

6. На каком расстоянии от линзы должен быть предмет, чтобы размеры самого предмета и его изображение были одинаковыми?

7. Можно ли по характеристикам изображения, полученного с помощью линзы, определить, какая это линза - собирающая или рассеивающая?

8. Назовите известные вам оптические приборы , в которых есть линзы.

9. Какие физичес­кие величины связывает формула тонкой линзы?

10. Какого прави­ла следует придерживаться, применяя формулу тонкой линзы?

1. Перенесите рисунок в тетрадь и для каждого случая постройте изображение предмета AB в собирающей линзе. Охарактеризуйте полученные изображения.


2. На рисунке показаны главная оптическая ось линзы KN, светя­щаяся точка S и ее изображение S 1 . Перенесите рисунок в тетрадь и с помощью соответствующих построений определите расположе­ние оптического центра и фокусов линзы. Определите тип линзы и тип изображения.

3. Предмет расположен в фокусе собирающей линзы. Покажите гра­фически, что изображение в этом случае не образуется.

4. На лист с печатным текстом попала капля прозрачного клея. Поче­му буквы, которые оказались под каплей, кажутся большими, чем соседние?

5. Оптическая сила линзы 5 дптр. На каком расстоянии от линзы нужно расположить зажженную свечу, чтобы получить изображе­ние пламени свечи в натуральную величину? Сделайте схематичес­кий чертеж, поясняющий ваше решение.

6. Выполняя лабораторную работу, ученик с помощью линзы получил на экране четкое изображение нити накаливания электрической лампочки. Какими являются фокусное расстояние и оптическая сила линзы, если расстояние от электрической лампочки до линзы 30 см, а расстояние от линзы до экрана 15 см?

7. Предмет расположен на расстоянии I м от линзы. Мнимое изобра­жение предмета расположено на расстоянии 25 см от линзы. Опре­делите оптическую силу линзы. Какая это линза - собирающая или рассеивающая?

8. Лампочка расположена на расстоянии 12,5 см от собирающой лин­зы, оптическая сила которой 10 дптр. На каком расстоянии от лин­зы получится изображение лампочки?

9. С помощью линзы на экране получили четкое изображение предме­та. Определите оптическую силу линзы, если предмет расположен на расстоянии 60 см от линзы. Расстояние между предметом и эк­раном 90 см.

  • Экспериментальное задание

Используя свечу, собирающую линзу и экран , получите на экране увеличенное изображение пламени свечи. Заслоните половину линзы не­прозрачным экраном. Опишите и объясните явление, которое наблюдается.

  • Физика и техника в Украине

Государственное предприятие завод «Арсенал» (г. Киев) было основано в 1764 году как «арсенальные мастерские» для ремонта и изготовления различных видов вооружений, в том числе артиллерийских. С 1946 года предприятие перепрофилировалось на выпуск оптических, оптико-механических и оптико-электронных приборов. Все космические стар­ты бывшего СССР и России обеспечивались оптико-электронными системами ориентирова­ния, выпущенными на заводе «Арсенал». Одним из известнейших видов продукции завода является фототехника , история которой началась с первой массовой фотокамеры «Киев-2» (1949 г.). Фотоаппараты, созданные арсенальцами, использовались для фотосъемки с борта космических кораблей серии «Восток», «Союз», лунных кораблей серий «Эхо» и «Зонд», ор­битальной станции «Салют», а также в открытом космосе.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника