Положение нейтральной линии при внецентренном растяжении сжатии. Внецентренное действие продольной силы. Свойства нулевой линии

Рассмотрим прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох. Равнодействующая этих сил F приложена в точке С. В локальной правосторонней системе координат yOz , совпадающей с главными центральными осями сечения, координаты точки С равны а и b (рис. 5.18).

Заменим приложенную нагрузку статически эквивалентной ей системой сил и моментов. Для этого перенесем равнодействующую силу F в центр тяжести сечения О и догрузим стержень двумя изгибающими моментами, равными произведению силы Т^на ее плечи относительно осей координат: M ff = Fa и M z = Fb.

Отметим, что по правилу правосторонней системы координат для точки С, лежащей в первой четверти, изгибающие моменты формально получат сле-

Рис. 5.18. Прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох

дующие знаки: М у = Fa и М 7 = -Fb. При этом в элементарной площадке, лежащей в первой четверти, оба момента вызывают растягивающее напряжение.

Используя принцип независимости действия сил, определим напряжения в текущей точке сечения с координатами у и z от каждого силового фактора отдельно. Общее напряжение получим суммированием всех трех составляющих напряжений:

Определим положение нейтральной оси. Для этого в соответствии с формулой (5.69) приравняем к нулю значение нормального напряжения в текущей точке:

В результате простых преобразований получим уравнение нейтральной линии

где i y и i z - главные радиусы инерции , определяемые по формулам (3.14).

Таким образом, в случае внецентренного растяжения-сжатия нейтральная линия не проходит через центр тяжести сечения (рис. 5.19), на что указывает наличие в уравнении (5.70) отличающегося от нуля свободного члена.

Максимальные напряжения возникают в точках сечения А и В, наиболее удаленных от нейтральной линии. Установим соотношение между координатами точки приложения силы и положением нейтральной линии. Для этого определим точки пересечения этой линией координатных осей:

Рис. 5.19.

Полученные формулы показывают, что координата точки приложения силы а и координата точки пересечения нейтральной линией оси координат Oz (точка г 0) имеют противоположные знаки. То же самое можно сказать о величинах b и у 0 . Таким образом, точка приложения равнодействующей силы и нейтральная линия находятся по разные стороны относительно начала координат.

Согласно полученным формулам при приближении точки приложения силы к центру тяжести сечения нейтральная линия отдаляется от центральной зоны. В предельном случае (а = b = 0) приходим к случаю центрального растяжения-сжатия.

Представляет интерес определение зоны приложения силы, при котором напряжения в сечении будут иметь одинаковый знак. В частности, для материалов, плохо сопротивляющихся растяжению, сжимающую силу рационально прилагать именно в этой зоне, чтобы в сечении действовали только сжимающие напряжения. Такая зона вокруг центра тяжести сечения называется ядром сечения.

Если сила приложена в ядре сечения, то нейтральная линия не пересекает сечение. В случае приложения силы по границе ядра сечения нейтральная линия касается контура сечения. Для определения ядра сечения можно использовать формулу (5.71).

Если нейтральную линию представить как касательную к контуру сечения и рассмотреть все возможные положения касательной и соответствующие этим положениям точки приложения силы, то точки приложения силы очертят ядро сечения.


Рис. 5.20.

а - эллипс; 6 - прямоугольник

Многие элементы строительных конструкций (колонны, стойки, опоры) находятся под воздействием сжимающих сил, приложенных не в центре тяжести сечения. На рис. 12.9 показана колонна, на которую опирается балка перекрытия. Как видно, сила действует по отношению к оси колонны с эксцентриситетом е, и таким образом, в произвольном сечении а-а колонны наряду с продольной силой N = возникает изгибающий момент, величина которого равна Ре. Внецентренное растяжение (сжатие) стержня представляет такой вид деформирования, при котором равнодействующие внешних сил действуют вдоль прямой, параллельной оси стержня. В дальнейшем будем рассматривать главным образом задачи внецентренного сжатия. При внецентренном растяжении во всех приводимых расчетных формулах следует изменить знак перед силой Р на противоположный.

Пусть стержень произвольного поперечного сечения (рис. 12.10) нагружен на торце внецентренно приложенной сжимающей силой Р, направленной параллельно оси Ох. Примем положительные

направления главных осей инерции сечения Оу и Oz таким образом, чтобы точка приложения силы Р находилась в первой четверти осей координат. Обозначим координаты точки приложения силы Р через у р и z P -

Внутренние усилия в произвольном сечении стержня равны

Знаки минус у изгибающих моментов обусловлены тем, что в первой четверти осей координат эти моменты вызывают сжатие. Величины внутренних усилий в данном примере не изменяются по длине стержня, и таким образом, распределение напряжений в сечениях, достаточно удаленных от места приложения нагрузки, будет одинаковым.

Подставляя (12.11) в (12.1), получим формулу для нормальных напряжений при внецентренном сжатии:

Эту формулу можно преобразовать к виду

где i , i- главные радиусы инерции сечения. При этом

Положив в (12.12) о = 0, получим уравнение нулевой линии:

Здесь у 0 и z 0 - координаты точек нулевой линии (рис. 12.11). Уравнение (12.14) является уравнением прямой, не проходящей через центр тяжести сечения. Чтобы провести нулевую линию, найдем точки ее пересечения с осями координат. Полагая в (12.14) последовательно у 0 = 0 и z 0 = 0, соответственно найдем

где a z и а у - отрезки, отсекаемые нулевой линией на осях координат (рис. 12.11).

Установим особенности положения нулевой линии при вне- центренном сжатии.

  • 1. Из формул (12.15) следует, что а у и a z имеют знаки, противоположные знакам соответственно у р и z P - Таким образом, нулевая линия проходит через те четверти осей координат, которые не содержат точку приложения силы (рис. 12.12).
  • 2. С приближением точки приложения силы Р по прямой к центру тяжести сечения координаты этой точки у р и z P уменьшаются. Из (12.15) следует, что при этом абсолютные значения длин отрезков а у и a z увеличиваются, то есть нулевая линия удаляется от центра тяжести, оставаясь параллельной самой себе (рис. 12.13). В пределе при Z P = y P = 0 (сила приложена в центре тяжести) нулевая линия удаляется в бесконечность. В этом случае в сечении напряжения будут постоянными и равными о = -P/F.
  • 3. Если точка приложения силы Р находится на одной из главных осей, нулевая линия параллельна другой оси. Действительно, положив в (12.15), например, у р = 0, получим, что а у = то есть нулевая линия не пересекает ось Оу (рис. 12.14).
  • 4. Если точка приложения силы перемещается по прямой, не проходящей через центр тяжести, то нулевая линия поворачивается вокруг некоторой точки. Докажем это свойство. Точкам приложения сил Р х и Р 2 , расположенным на осях координат, соответствуют нулевые линии 1 - 1 и 2-2, параллельные осям (рис. 12.15), которые пересекаются в точке D. Так как эта точка принадлежит двум нулевым линиям, то напряжения в этой точке от одновременно приложенных сил Р х и Р 2 будут равны нулю. Поскольку любую силу Р 3 , точка приложения которой расположена на прямой Р { Р 2 , можно

разложить на две параллельные составляющие, приложенные в точках Pj и Р 2 , то отсюда следует, что напряжения в точке D от действия силы Р 3 также равны нулю. Таким образом, нулевая линия 3-3, соответствующая силе Р 3 , проходит через точку D.

Другими словами, множеству точек Р, расположенных на прямой Р { Р 2 , соответствует пучок прямых, проходящих, через точку D. Справедливо и обратное утверждение: при вращении нулевой линии вокруг некоторой точки точка приложения силы перемещается по прямой, не проходящей через центр тяжести.

Если нулевая линия пересекает сечение, то она делит его на зоны сжатия и растяжения. Так же как и при косом изгибе, из гипотезы плоских сечений следует, что напряжения достигают наибольших значений в точках, наиболее удаленных от нулевой линии. Характер эпюры напряжений в этом случае показан на рис. 12.16, а.

Если нулевая линия расположена вне сечения, то во всех точках сечения напряжения будут одного знака (рис. 12.16, б).

Пример 12.3. Построим эпюру нормальных напряжений в произвольном сечении внецентренно сжатой колонны прямоугольного сечения с размерами b х h (рис. 12.17). Квадраты радиусов инерции сечения согласно (12.22) равны


Отрезки, отсекаемые нулевой линией на осях координат, определяются по формулам (12.15):

Подставляя последовательно в (12.12) координаты наиболее удаленных от нулевой линии точек С и В (рис. 12.18)

найдем

Эпюра о показана на рис. 12.18. Наибольшие сжимающие напряжения по абсолютной величине в четыре раза превосходят значения напряжений, которые были бы в случае центрального приложения силы. Кроме того, в сечении появились значительные растягивающие напряжения. Заметим, что из (12.12) следует, что в центре тяжести (у = z = 0) напряжения равны о = -P/F.

Пример 12.4. Полоса с вырезом нагружена растягивающей силой Р (рис. 12.19, а). Сравним напряжения в сечении ЛВ, достаточно удаленном от торца и места выреза, с напряжениями в сечении CD в месте выреза.

В сечении АВ (рис. 12.19, б) сила Р вызывает центральное растяжение и напряжения равны а = P/F = P/bh.

В сечении CD (рис. 12.19, в) линия действия силы Р не проходит через центр тяжести сечения, и поэтому возникает внецентренное растяжение. Изменив знак в формуле (12.12) на противоположный и приняв у р = 0, получим для этого сечения

Принимая

Нулевая линия в сечении CD параллельна оси Оу и пересекает ось Oz на расстоянии а = -i 2 y /z P - Ь/ 12. В наиболее удаленных от нулевой линии точках сечения C(z - -Ь/ 4) и D(z - Ь/ 4) напряжения согласно (12.16) равны

Эпюры нормальных напряжений для сечений ЛВ и CD показаны на рис. 12.19, б, в.

Таким образом, несмотря на то что сечение CD имеет площадь в два раза меньшую, чем сечение АВ, за счет внецентренного приложения силы растягивающие напряжения в ослабленном сечении возрастают не в два, а в восемь раз. Кроме того, в этом сечении появляются значительные по величине сжимающие напряжения.

Следует заметить, что в приведенном расчете не учитываются дополнительные местные напряжения, возникающие вблизи точки С из-за наличия выточки. Эти напряжения зависят от радиуса выточки (с уменьшением радиуса они увеличиваются) и могут значительно превысить по величине найденное значение а с = 8P/bh. При этом характер эпюры напряжений вблизи точки С будет существенно отличаться от линейного. Определение местных напряжений (концентрация напряжений) рассматривается в главе 18.

Многие строительные материалы (бетон, кирпичная кладка и др.) плохо сопротивляются растяжению. Их прочность на растяжение во много раз меньше, чем на сжатие. Поэтому в элементах конструкций из таких материалов нежелательно появление растягивающих напряжений. Чтобы это условие выполнялось, необходимо, чтобы нулевая линия находилась вне сечения. В противном случае нулевая линия пересечет сечение и в нем появятся растягивающие напряжения. Если нулевая линия является касательной к контуру сечения, то соответствующее положение точки приложения силы является предельным. В соответствии со свойством 2 нулевой линии, если точка приложения силы будет приближаться к центру тяжести сечения, нулевая линия будет удаляться от него. Геометрическое место предельных точек, соответствующих различным касательным к контуру сечения, является границей ядра сечения. Ядром сечения называется выпуклая область вокруг центра тяжести, обладающая следующим свойством: если точка приложения силы находится внутри или на границе этой области, то во всех точках сечения напряжения имеют один знак. Ядро сечения является выпуклой фигурой, поскольку нулевые линии должны касаться огибающей контура сечения и не пересекать его.

Через точку А (рис. 12.20) можно провести бесчисленное множество касательных (нулевых линий); при этом только касательная АС является касательной к огибающей, и ей должна соответствовать определенная точка контура ядра сечения. В то же время, например, нельзя провести касательную к участку АВ контура сечения, поскольку она пересекает сечение.

Построим ядро сечения для прямоугольника (рис. 12.21). Для касательной 1 - 1 а 7 - Ь/ 2; а = . Из (12.15) находим для точки 1, соответствующей этой касательной, z P = -i 2 y / а 7 =-Ь/6; у р - 0. Для касательной 2-2 а у - к/ 2; а 7 =°°, и координаты точки 2 будут равны у р - -h/6; z P - 0. Согласно свойству 4 нулевой линии точки приложения силы, соответствующие различным касательным к правой нижней угловой точке сечения, расположены на прямой 1-2. Положение точек 3 и 4 определяется из условий симметрии. Таким образом, ядро сечения для прямоугольника представляет собой ромб с диагоналями Ь /3 и И/З .

Чтобы построить ядро сечения для круга, достаточно провести одну касательную (рис. 12.22). При этом а = R; а = °о.

"У У ^ ^

Учитывая, что для круга i у - J у /F - R / 4, из (12.15) получим

Таким образом, ядро сечения для круга представляет собой круг с радиусом R/4.

На рис. 12.23, а, 6 показаны ядра сечения для двутавра и швеллера. Наличие четырех угловых точек ядра сечения в каждом из этих примеров обусловлено тем, что огибающая контура и у двутавра и у швеллера является прямоугольником.

Расчет стержней при внецентренном сжатии-растяжении

Пример 1.

Чугунный короткий стержень сжимается продольной силой F = 600 кН, приложенной в точке В .

Требуется:

1. Определить положение нейтральной линии;

2. Вычислить наибольшие растягивающие и наибольшие сжимающие напряжения.

Решение.

1. Изобразим сечение в масштабе.

2. Определим положение главных центральных осей. Сечение обладает осью симметрии, поэтому ось Y можем показать сразу.

3. Определим положение центра тяжести фигуры (фи гура состоит из двух квадратов). Выберем произвольную вспомогательную систему координат.

х 1 С 1 Y – вспомогательная система координат;

определим координаты точек С 1 и С 2 в системе х 1 С 1 Y .

А 1 , А 2 – площадь первого и второго квадрата соответственно.

А = А 1 – А 2 – площадь всей фигуры.

А 1 = b 2 = 2500 см 2

С (х с = 0; у с = -5,89) – положение центра тяжести во вспомогательной системе координат х 1 С 1 Y .

Ось X проводим перпендикулярно оси Y через точку С .

Так как сечение симметричное, то XС Y – главная центральная система координат.

4. Определим главные центральные моменты инерции и квадраты главных радиусов сечения.

где а 1 = 5,89см – расстояние между осями Х и х 1 ;

а 2 = 5,89 + 17,68 = 23,57 – расстояние между осями Х и х 2 .

5. Определим координаты точки В (точки приложения силы) в главной центральной системе координат х с Су с.

6. Определим положение нейтральной линии.

,

где х N , у N – координаты точек нейтральной линии.

В данной задаче

Нейтральная линия проходит через точку (х N =0;у N =11,36) параллельно оси х с.

7. В данной задаче на стержень действует сжимающая сила, поэтому нормальные напряжения в любой точке поперечного сечения будем определять по формуле

гдех, у – это координаты точки, в которой считают напряжения.

8. Наибольшие сжимающие напряжения достигаются в точке В . Эта точка,наиболее удаленная от нейтральной линии в области сжатия.

Наибольшее растягивающие напряжения достигаются в точках К и L y K = у L = 23,57 см.

Ответ: ,

Пример 2.

Построить ядро сечения.

Решение.

1. Определяем тип контура ядра сечения.

2. Определяемчисло вершин многоугольника, получившегося внутри контура (то есть число предельных касательных к сечению стержня). 6 предельных касательных - 6 вершин.

3. Определяем положение главных центральных осей. Сечение обладает горизонтальной осью симметрии, поэтому ось «Х » можем показать сразу. ХО Y 0 – вспомогательная система координат (ось «Y 0 »проводим произвольно).

Сечение состоит из двух простых фигур (прямоугольника и квадрата). Определим координаты центров тяжести С 1 и С 2 в произвольной системе координат ХО Y 0 .

Центр тяжести прямоугольника.

Центр тяжести квадрата.

Площадь прямоугольника.

Площадь квадрата.

(так как С 1 и С 2 лежат на оси).

Центр тяжести всего сечения в системе координат ХО Y 0 имеет координаты С (0,015; 0). (Покажем на чертеже).

Ось Y проводим перпендикулярно оси Y 0 через центр тяжести С .

Так как сечение симметричное, то ось симметрии и ось ей перпендикулярная, проходящая через центр тяжести образуют главную центральную систему координат.

X, Y – главные центральные оси сечения.

4. Определяем геометрические характеристики сечения относительно главных центральных осей.

Вычисляем главные центральные моменты инерции J x и J y .

Главные центральные моменты инерции прямоугольника.

Главные центральные моменты инерции квадрата.

(здесь использовали формулы для определения моментов инерции относительно параллельных осей. Осевые моменты инерции плоского сечения относительно произвольных осей х 1 и у 1 , параллельных центральным осям х и у , определяют по формулам

;

где а, b – расстояния между осями х и х 1 , у и у 1 , А – площадь поперечного сечения. принимается, что х, у – центральные оси, то есть оси, проходящие через центр тяжести С плоского сечения).

Вычислим квадраты главных радиусов инерции

5. Определяем вершины ядра сечения.

Пусть известно положение нейтральной линии. Требуется определить координаты точки приложения силы.

1. Рассмотрим положение нейтральной линии 1 – 1.

Используем свойство нейтральной линии. Так как нейтральная линия 1–1 проходит параллельно оси Y , то точка приложения силы Я 1 находится на оси X , то есть у F =0.

х N – абсцисса точки нейтральной линии 1 – 1 (расстояние отточки С до нейтральной линии 1 – 1).

2. Рассмотрим положение нейтральной линии 2 – 2.

Возьмем две точки нейтральной линии 2 – 2 (лучше выбирать точки, где легко можно подсчитать координаты)

В (-0,615; 0,3)и D (-0,015; 0,6)

Подставим координаты точек В и D в уравнение нейтральной линии.

(1)

(2)

Решим систему уравнений (1) – (2)

Из первого уравнения

(3)

Подставим (3) в (2)

3. Рассмотрим положение нейтральной линии 3 – 3.

Используем свойство нейтральной линии. Так как нейтральная линия 3 – 3 проходит параллельно оси X , то точка приложения силы Я 3 находится на оси Y , то есть х F =0.

у N – ордината точки нейтральной линии 3 – 3 (расстояние от точки С до нейтральной линии 3 – 3).

4. Рассмотрим положение нейтральной линии 4 – 4.

Используем свойство нейтральной линии. Так как нейтральная линия 4 – 4 проходит параллельно оси Y , то точка приложения силы Я 4 находится на оси X , то есть у F = 0.

Пример 3 .

Жесткий стержень загружен двумя силами – растягивающей и сжимающей (рис. 1). Стержень выполнен из хрупкого материала с характеристиками и . Сечение стержня симметрично и имеет форму и размеры, соответствующие рис. 2.

Требуется:

1) найти допускаемую нагрузку на стержень из условия прочности, если отношение сжимающей и растягивающей сил

2) построить ядро сечения.

Рис.1Рис.2

Решение.

Положение главных центральных осей инерции и моменты инерции относительно этих осей заданного сечения найдены ранее (см. раздел «Геометрические характеристики плоских сечений»). Найдем внутренние усилия в произвольном сечении стержня:

Для определения положения опасных точек построим нейтральную линию. Уравнение нейтральной линии в данной задаче имеет вид

Отсюда найдем отрезки, отсекаемые нейтральной линией на осях и . Если , то

и, если , то

Нейтральная линия показана на рис. 3.

Рис.3

Проведем касательные к контуру сечения, параллельные нейтральной линии. Опасными являются точки 1 и 1¢ (см. рис. 3), наиболее отдаленные от нейтральной линии. Для хрупкого материала более опасной является точка с максимальными растягивающими напряжениями, т.е. точка 1. Найдем напряжение в этой точке, подставляя в формулу координаты точки 1:

Условие прочности в точке 1 И ли

Отсюда можно найти допускаемое значение нагрузки (не забывайте правильно подставлять единицы измерения. Множитель перед F p в данном примере имеет размерность см -2).

В заключение необходимо убедиться в том, что и в точке 1¢ , которая в данном примере дальше удалена от нейтральной оси, чем точка 1, и в которой действуют сжимающие напряжения, условие прочности тоже выполняется, т.е.

Теперь построим ядро сечения. Поместим полюсы во внешних угловых точках сечения. Учитывая симметрию сечения, достаточно расположить полюсы в трех точках: 1, 2 и 3 (см. рис. 3). Подставляя в формулы ; координаты полюсов, найдем отрезки, отсекаемые нейтральными линиями на осях и . Если полюс находится в точке 1, то его координаты и

Нейтральная линия 1–1, соответствующая полюсу в точке 1 показана на рис. 3. Аналогично строим нейтральные линии 2–2 и 3–3, соответствующие полюсам 2 и 3. При построении нейтральной линии следите за тем, чтобы она проходила в квадранте, противоположном тому, в котором находится полюс. Область, заштрихованная на рис. 3, является ядром сечения. Для контроля на рис. 3 показан эллипс инерции. Ядро сечения должно находиться внутри эллипса инерции, нигде не пересекая его.

Пример 4.

Стержень несимметричного сечения сжимается силой, приложенной в точке А (рис. 1). Поперечное сечение имеет форму и размеры, показанные на рис. 2. Материал стержня – хрупкий.

Требуется:

1) найти допускаемую нагрузку, удовлетворяющую условию прочности;

2) построить ядро сечения.

Решение.

Прежде всего, надо определить моменты и радиусы инерции поперечного сечения относительно главных центральных осей. Эта часть решения задачи приведена в разделе «Геометрические характеристики плоских сечений». На рис. 1 показаны главные центральные оси инерции сечения , , положение которых найдено ранее. В системе центральных осей Y , Z (рис.2) координаты точки приложения силы А , . Вычислим координаты точки А в системе главных центральных осей по формулам

.

Рис.1Рис.2

Для определения положения опасных точек построим нейтральную линию, используя формулы ; . Радиусы инерции , найдены ранее.

Отложим эти отрезки вдоль главных осей и проведем через полученные точки нейтральную линию (см. рис. 3).

Рис.3

Опасными точками, т.е. точками, наиболее удаленными от нейтральной оси, будут точки 1 и 3 (см. рис.3). В точке 1 действует наибольшее растягивающее напряжение. Запишем условие прочности в этой точке, используя формулу :

Подставим в условие прочности координаты опасной точки 1 в главных осях, вычислив их по формулам

или измерив на рисунке, выполненном в масштабе, Тогда из условия прочности в точке 1 можно найти допускаемое значение нагрузки:

.

Для найденного значения допускаемой нагрузки необходимо убедиться, что условие прочности выполняется и в точке 3, которая дальше удалена от нейтральной линии и в которой д ействует сжимающее напряжение. Для определения напряжения в точке 3 подставим в формулу координаты этой точки

.

Это напряжение не должно превосходить . Если условие прочности в точке с максимальными сжимающими напряжениями выполняться не будет, надо найти значение допускаемой нагрузки заново из условия прочности в этой точке.

В заключение построим ядро сечения. Поместим полюсы во внешние угловые точки сечения, т.е. в точки 1, 2, 3, 4, 5 (см. рис. 3). Точка 4, находящаяся на контуре квадранта круга, получена следующим образом. Отсекая внутреннюю угловую точку , проводим линию, касательную к контуру сечения (пунктир на рис. 3). Точка 4 является точкой касания этой линией квадранта круга. Последовательно находим положение нейтральных линий, соответствующих полюсам в указанных точках, находя отрезки, отсекаемые нейтральными линиями на осях , , по формулам ; .Например, если полюс находится в точке 1, то, подставляя в ; координаты точки 1 (), найдем

Поскольку существенно больше , то это значит, что нейтральная линия 1–1 практически параллельна оси . Отрезок откладываем в масштабе вдоль оси и проводим прямую 1–1, параллельную оси (см. рис. 3). Аналогично строим нейтральные линии, соответствующие полюсам, расположенным в других точках. Ядро сечения (заштрихованная область) показано на рис. 3. Отметим, что контур ядра сечения между нейтральными линиями 4–4 и 5–5 очерчен по кривой, т.к. переход полюса из точки 4 в точку 5 происходит не по прямой линии. На рис. 3 показан также эллипс инерции сечения, построенный ранее.

Пример 5.

На брус заданного поперечного сечения в точке D верхнего торца действует продольная сжимающая сила Р =300 кН (см. рис.). Требуется найти положение нулевой линии, определить наибольшие (растягивающие и сжимающие) напряжения и построить ядро сечения.

Решение:

1. Нахождение положения главных центральных осей инерции и определение площади поперечного сечения

Так как поперечное сечение бруса (рис.1) имеет две оси симметрии, а они всегда проходят через центр тяжести сечения и являются главными, то главные центральные оси сечения х с и у с будут совпадать с этими осями симметрии.

Центр тяжести сечения С в этом случае определять не надо, так как он совпадает с геометрическим центром сечения.

Площадь поперечного сечения бруса равна:

2. Определение главных центральных моментов инерции и главных радиусов инерции

Моменты инерции определяем по формулам:


Вычисляем квадраты главных радиусов инерции:

3. Определение положения нулевой линии

Отрезки, отсекаемые нулевой линией на главных центральных осях инерции, определяем по формулам:

где х р =2,3 см и у р =2 см – координаты точки приложения силы Р (точка Р рис.11). Отложив отрезки и соответственно на осях х с и у с и проводя через их концы прямую, получим нулевую линию сечения, на которой нормальные напряжения равны нулю (). На рис.1 эта линия обозначена n -n .

4. Определение наибольших сжимающих и растягивающих напряжений и построение эпюры напряжений

Точка D , координаты которой х D =5,25 см и у D =5 см, наиболее удалена от нулевой линии в сжатой зоне сечения, поэтому наибольшие сжимающие напряжения возникают в ней и определяются по формуле

Наибольшие растягивающие напряжения возникают в точке К , имеющей координаты х к = ‑5,25 см, у к = ‑5 см.

По полученным значениям и строим эпюру нормальных напряжений (см. рис.11).

5. Построение ядра сечения

Для построения ядра сечения, учитывая, что сечение симметричное, рассмотрим два положения касательной к контуру сечения I -I и II -II (см. рис.1).

Отрезки, отсекаемые касательной I -I на осях координат, равны:

Координаты граничной точки 1 ядра сечения определяются по формулам:

Касательная II -II отсекает отрезки =5,25 см, =¥ .

Координаты граничной точки 2 :

Координаты граничных точек второй половины ядра сечения можно не определять, так как сечение бруса симметричное. Учитывая это для касательных III -III и IV -IV , координаты граничных точек 3 и 4 будут:

= 0; = 15,2× 10 -3 м;

=23,0× 10 -3 м = 0.

Соединив последовательно точки 1, 2, 3 и 4прямыми получим ядро сечения (рис.1).

Пример 6.

В сечении, указанном на рисунке и принадлежащем внецентренно сжатой колонне, определить наиболее опасные точки и напряжения в них. Сжимающая сила F = 200 кН = 20 т приложена в точке A .

Решение.

Так как оси X и Y являются осями симметрии, то они главные центральные оси.

Наиболее опасными точками будут точки, в которых возникают максимальные нормальные напряжения, а это точки, наиболееудаленные от нулевой линии. Следовательно,нам необходимо сначала определить положение нулевой линии. Записываем уравнение нулевой линии.

В нашем случае координаты точки приложения силы следующие (см. рис.):

= – 90 мм = – 0,09 м;

= – 60 мм = – 0,06 м.

Квадраты радиусов инерции и определяются так:

здесь и - осевые моменты инерции относительно главных центральных осей X и Y.

Определение осевых моментов инерции. Для нашего сечения будем иметь:

М 4 ;

М 4 .

Площадь всего сечения будет равна:

М 2 ,

и тогда квадраты радиусов инерции:

м 2 ;

м 2 .

По формулам определим отрезки, которые нулевая линия отсекает на осях X и Y :

м ;

м.

Отложим эти отрезки на координатных осях, получим точки, в которых нулевая линия пересекает координатные оси. Через эти точки проводим прямую (см. рис.). Видим, что наиболее удаленные точки - это точка B в зоне отрицательных напряжений и точка D в зоне положительных напряжений.

Определим напряжения в этих точках:

;

На основании чертежа (см. рис.) получим:

= – 0,12 м; = – 0,03 м.

= –5,39× 10 4 кН/м 2 = – 53,9 МПа.

;

0,12 м; = 0,03 м.

1,86× 10 4 кН/м 2 = 18,6 МПа.

Пример 7.

Чугунныйкороткий стержень, поперечное сечение которого изображено на рисунке, сжимается продольной силой F , приложенной в точке А .

Требуется:

1) вычислить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив величины этих напряжений через F и размеры сечения; а = 40 мм, b = 60 мм;

2) найти допускаемую нагруз­ку F при заданных размерах сечения и допускаемых напряжениях для чугуна на сжатие = 100 МПа и на растяжение = 30 МПа.

Решение.

Выше указывалось, что геометрические характеристикиврасчетныхформулах берутсяотно­сительно главных центральных осей, поэтому определим центр тяжести сечения. Ось X является осью сим­метрии, и следовательно, она про­ходит через центр тяжести, поэто­му намдостаточно найти его место­положение на этой оси.Разобьемсечениена два составных(1 и 2)ивыберемвспомогательные оси .Запишемкоор­динатыцентровтяжести С 1 и С 2 в этих осях.

Будем иметь С 1 (0,0); С 2 (0,04; 0), тогда:

м ;

Итак, в осяхxy 1 центр тяжести всего сечения имеет координаты С (0,0133; 0). Проводим через центр тяжести сечения ось Y, перпендикулярную оси X. Оси X и Y и будут главными центральными осями сечения.

Определим положение нулевой линии.

Координаты точки приложения силы (точки А ) будут следующие: =(0,02–0,0133)+0,04 =0,0467 м; = 0,06 м;

м 4 ,

м 4 ,

где = 0,0133 м;

м 2 .

м 2 , м 2 ;

и получим отрезки, отсекаемые нейтральной осью на главных осях инерции X и Y соответственно:

Откладываем на оси X , а на оси Y и проводим через полученные точки нулевую линию (см. рис.). Видим, что наиболее удаленные точки сечения от нулевой линии - это точка А в сжатой зоне и точка В в растянутой зоне. Координаты этих точек следующие: А (0,0467; 0,06); В (– 0,0333; –0,12). Определим напряжения в этих точках, выразив их через F .

Напряжение в точке А не должно превышать допускаемое напряжение на сжатие , а напряжение в точке В не должно превышать допускаемое напряжение на растяжение , т.е. должны выполняться условия:

, ,

или

(а),

(б).

Из (а):

из (б):

Чтобы одновременно удовлетворить условие прочности и в растянутой, и в сжатой зонах колонны, мы должны взять в качестве допускаемой нагрузки меньшую из двух полученных, т.е. = 103 кН.

Пример 8.

Чугунный короткий стержень прямоугольного поперечного сечения, изображенный на рисунке, сжимается продольной силой F , приложенной в точке А .

Требуется:

1) вычислить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив величины этих напряжений через F и размеры сечения;

2) найти допускаемую нагрузку F при заданных размерах сечения и допускаемых напряжениях для чугуна на сжатие и на растяжение .

Решение.

Определим положение нулевой линии. Для этого воспользуемся формулами

Координаты точки приложения силы (точки А) будут следующими:

Квадраты радиусов инерции определим по формулам:

Определяем отрезки, которые нулевая линия отсекает на осях х и у .

Откладываем на оси х х 0 , а на оси у у 0 и проводим через полученные точки нулевую линию n n (см. рис.). Видим, что наиболее удаленные точки сечения - это точка А в сжатой области и точка В в растянутой области. Координаты этих точек следующие: А (0,04; 0,06), В (–0,04; –0,06). Определим величину напряжения в этих точках, выразив их через силу F :

Напряжение в точке А не должно превышать допускаемое напряжение на сжатие , а напряжение в точке В не должно превышать допускаемое напряжение на растяжение , т.е. должно выполняться условие

Из первого выражения величина F

Принимается нагрузка наименьшая из двух найденных, т.е. = 567кн.

Пример 9.

Короткий чугунный стержень с поперечным сечением, изображенным на рис. а , сжимается продольной силой P , приложенной в точке A . Определить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении стержня, выразив их через силу P и размеры сечения см, см. Найти допускаемую нагрузку при заданных допускаемых напряжениях для материала на сжатие кН/см 2 и на растяжение кН/см 2 .


Решение.

Действующая на стержень сила P помимо сжатия осуществляет изгиб стержня относительно главных центральных осей x и y . Изгибающие моменты соответственно равны:

где см и см – координаты точки приложения силы P (координаты точки A ).

Нормальные напряжения в некоторой точке с координатами x и y любого поперечного сечения стержня определяются по формуле

,

где F – площадь, а и – радиусы инерции поперечного сечения.

1. Определяем геометрические характеристики поперечного сечения стержня.

Площадь поперечного сечения стержня равна:

Главные центральные моменты инерции определяем следующим образом.

Вычисляя момент инерции всего сечения относительно оси x , разобьем всю фигуру на один прямоугольник с шириной и высотой и два прямоугольника с шириной и высотой , чтобы ось x была для всех этих трех фигур центральной. Тогда

.

Для вычисления момента инерциивсего сечения относительно оси y разобьем всю фигуру несколько иначе: один прямоугольник с шириной и высотой и два прямоугольника с шириной и высотой , чтобы теперь уже ось y была для всех этих трех фигур центральной. Получим

.

Квадраты радиусов инерции равны:

; .

2. Определяем положение нулевой линии.

Отрезки и , отсекаемые нулевой линией от осей координат, равны:

см ; см.

Показываем нулевую линию N – N на рис. б . Нулевая линия делит поперечное сечение на две области, одна из которых испытывает растяжение, а другая – сжатие. На рисунке 1, б растянутая область поперечного сечения стержня нами заштрихована .

3. Вычисляем наибольшее растягивающее напряжение.

Оно возникает в точках 6 и 7 , то есть в точках, наиболее удаленных от нулевой линии. Значение этого напряжения, вычисленное, например, для точки 6 равно:

4. Вычисляем наибольшее сжимающее напряжение.

Оно возникает в точках 2 и 3 , также наиболее удаленных от нулевой линии. Значение этого напряжения, вычисленное, например, для точки 2 , равно:

5. Определяем допускаемую нагрузку из условия прочности на растяжение:

кН/см 2 ; кН.

6. Определяем допускаемую нагрузку из условия прочности на сжатие:

кН/см 2 ; кН.

из двух найденных в п. 6 и 7 значений:

Пример 10.

Короткая колонна, поперечное сечение которой изображено на рис.1, сжимается продольной силой F = 200 кН, приложенной в точке К . Размеры сечения а= 40 см, b = 16 см. Расчетное сопротивление материала на растяжение R t = 3 МПа, на сжатиеR с = 30 МПа.

Требуется :

1. Найти положение нулевой линии.

2. Вычислить наибольшие сжимающие и растягивающие напряжения и построить эпюру напряжений. Дать заключение о прочности колонны.

3. Определить расчетную несущую способность (расчетную нагрузку) F max при заданных размерах сечения.

4. Построить ядро сечения.

Рис.1

Решение.

1. Определение координат центра тяжести сечения .

Поперечное сечение колонны имеет ось симметрии Х с , следовательно центр тяжести лежит на этой оси и для отыскания координаты х с относительно вспомогательной оси Y o (см. рис.1) сложное сечение разбиваем на три прямоугольника

2. Геометрические характеристики сечения.

Для вычисления главных центральных моментов инерции воспользуемся зависимостью между моментами инерции при параллельном переносе осей.

Определяем квадраты радиусов инерции

Координаты точки приложения силы F

3. Положение нулевой линии

По найденным отрезкам, отсекаемым на осях координат проводим нулевую линию (см. рис. 2).

4. Определение наибольших сжимающих и растягивающих напряжений . Эпюра .

Наиболее удаленные от нулевой линии точки: В (-60; 16) и D (60; -32). Напряжения в этих опасных точках с координатами х dan , у dan не должны превосходить соответствующего расчетного сопротивления

.

Растягивающее напряжение

Сжимающее напряжение

Прочность колонны обеспечена.

По результатам расчета напряжений и на рис. 2 построена эпюра .

5. Вычисление расчетной несущей способности колонны F max .

Поскольку при заданном значении сжимающей силы прочность материала колонны существенно недоиспользована, найдем максимальное значение внешней нагрузки, приравнивая наибольшие напряжения s t и s c расчётным сопротивлениям.

Окончательно выбираем меньше значение F max = 425,8 кН, обеспечивающее прочность как растянутой, так и сжатой зон сечения.

Рис.2

6. Построение ядра сечения .

Чтобы получить очертание ядра сечения, необходимо рассмотреть все возможные положения касательных к контуру сечения и, предполагая, что эти касательные являются нулевыми линиями, вычислить координаты граничных точек ядра относительно главных центральных осей сечения. Соединяя затем эти точки, получим очертание ядра сечения.

Касательная 1-1: y o = 32 см,

.

Касательная 2-2: , .

Касательная 3-3: , .

Касательная 4-4: ; ;

; ;

;

.

Касательная 5-5: ; .

Касательная 6-6: ; ;

Пример 11.

В точке P колонны прямоугольного сечения приложена сжимающая сила P (см. рис.). Определить максимальное и минимальное нормальные напряжения.

Решение.

Нормальное напряжение при внецентренном сжатии определяем по формуле:

В нашей задаче

Момент инерции , площадь ,

Следовательно

На нейтральной линии . Поэтому ее уравнение

Наиболее удаленными точками от нейтральной оси являются точки A и B :

в точке A и

в точке B и

Если материал сопротивляется растяжению и сжатию различно, то следует составить два уравнения прочности:

Пример 12 .

Найти допускаемую нагрузку для бруса, показанного на рисунке, если расчетные сопротивления материала бруса на растяжение и сжатие равны R adm , t = 20 МПа; R adm ,с = 100 МПа.

Решение. Запишем условие прочности для наиболее напряженных точек любого сечения бруса, так как все сечения равноопасны:

Перепишем эти условия, учитывая, что

и , тогда

и

Отсюда определяем значения допустимых нагрузок.

Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид деформации получается при действии на стержень двух равных и прямопротивоположных сил Р , направленных по прямой АА , параллельной оси стержня (Рис.3 а). Расстояние точки А от центра тяжести сечения ОА=е называется эксцентриситетом .

Рассмотрим сначала случай внецентренного сжатия, как имеющий большее практическое значение.

Нашей задачей явится нахождение наибольших напряжений, материале стержня и проверка прочности. Для решения этой задачи приложим в точках О по две равные и противоположные силы Р (Рис.3 б). Это не нарушит равновесия стержня в целом и не изменит напряжений в его сечениях.

Силы Р , зачеркнутые один раз, вызовут осевое сжатие, а пары сил Р , зачеркнутые дважды, вызовут чистый изгиб моментами . Расчетная схема стержня показана на Рис.3 в. Так как плоскость действия изгибающих пар ОА может не совпадать ни с одной из главных плоскостей инерции стержня, то в общем случае имеет место комбинация продольного сжатия и чистого косого изгиба.

Так как при осевом сжатии и чистом изгибе напряжения во всех сечениях одинаковы, то проверку прочности можно произвести для любого сечения, хотя бы С—С (Рис.3 б, в).

Отбросим верхнюю часть стержня и оставим нижнюю (Рис.3 г). Пусть оси Оу и Oz будут главными осями инерции сечения.

Рис.3. а) расчетная схема б) преобразование нагрузок в)приведенная расчетная схема г) механизм исследования напряжений

Координаты точки А , — точки пересечения линии действия сил Р с плоскостью сечения, — пусть будут и . Условимся выбирать положительные направления осей Оу и Oz таким образом, чтобы точка А оказалась в первом квадранте. Тогда и будут положительны.

Для того чтобы отыскать наиболее опасную точку в выбранном сечении, найдем нормальное напряжение в любой точке В с координатами z и у . Напряжения в сечении С — С будут складываться из напряжений осевого сжатия силой Р и напряжений от чистого косого изгиба парами с моментом Ре , где . Сжимающие напряжения от осевых сил Р в любой точке равны , где — площадь поперечного сечения стержня; что касается косого изгиба, то заменим его действием изгибающих моментов в главных плоскостях. Изгиб в плоскости х Оу вокруг нейтральной оси Oz будет вызываться моментом и даст в точке В нормальное сжимающее напряжение

Точно так же нормальное напряжение в точке В от изгиба в главной плоскости х Oz , вызванное моментом , будет сжимающим и выразится формулой.

Суммируя напряжения от осевого сжатия и двух плоских изгибов и считая сжимающие напряжения отрицательными, получаем такую формулу для напряжения в точке В :


(1)

Эта формула годится для вычисления напряжений в любой точке любого сечения стержня, стоит только вместо у и z подставить координаты точки относительно главных осей с их знаками.

В случае внецентренного растяжения знаки всех составляющих нормального напряжения в точке В изменятся на обратные. Поэтому для того, чтобы получать правильный знак напряжений как при внецентренном сжатии, так и при внецентренном растяжении, нужно, кроме знаков координат у и z , учитывать также и знак силы Р ; при растяжении перед выражением

должен стоять знак плюс, при сжатии — минус.

Полученной формуле можно придать несколько иной вид; вынесем за скобку множитель ; получим:

(2)

Здесь и — радиусы инерции сечения относительно главных осей (вспомним, что и ).

Для отыскания точек с наибольшими напряжениями следует так выбирать у и z , чтобы достигло наибольшей величины. Переменными в формулах (1) и (2) являются два последних слагаемых, отражающих влияние изгиба. А так как при изгибе наибольшие напряжения получаются в точках, наиболее удаленных от нейтральной оси, то здесь, как и при косом изгибе, надо отыскать положение нейтральной оси.

Обозначим координаты точек этой линии через и ; так как в точках нейтральной оси нормальные напряжения равны нулю, то после подстановки в формулу (2) значений и получаем:

(3)

Это и будет уравнение нейтральной оси. Очевидно, мы получили уравнение прямой, не проходящей через центр тяжести сечения.

Чтобы построить эту прямую, проще всего вычислить отрезки, отсекаемые ею на осях координат. Обозначим эти отрезки и . Чтобы найти отрезок , отсекаемый на оси Оу , надо в уравнении (3) положить

тогда мы получаем:

Если величины и положительны, то отрезки и будут отрицательны, т. е. нейтральная ось будет расположена по другую сторону центра тяжести сечения, чем точка А (Рис.3 г).

Нейтральная ось делит сечение на две части — сжатую и растянутую; на Рис.3 г растянутая часть сечения заштрихована. Проводя к контуру сечения касательные, параллельные нейтральной оси, получаем две точки и , в которых будут наибольшие сжимающие и растягивающие напряжения.

Измеряя координаты у и z этих точек и подставляя их значения в формулу (1), вычисляем величины наибольших напряжений в точках и :

Если материал стержня одинаково сопротивляется растяжению и сжатию, то условие прочности получает такой вид:

Для поперечных сечений с выступающими углами, у которых обе главные оси инерции являются осями симметрии (прямоугольник, двутавр и др.) и Поэтому формула упрощается, и мы имеем

Если же материал стержня неодинаково сопротивляется растяжению и сжатию, то необходимо проверить прочность стержня как в растянутой, так и в сжатой зонах.

Однако может случиться, что и для таких материалов будет достаточно одной проверки прочности. Из формул (4) и (5) видно, что положение точки А приложения силы и положение нейтральной оси связаны: чем ближе подходит точка А к центру сечения, тем меньше величины и и тем больше отрезки и . Таким образом, с приближением точки А к центру тяжести сечения нейтральная ось удаляется от него, и наоборот. Поэтому при некоторых положениях точки А нейтральная ось будет проходить вне сечения и все сечение будет работать на напряжения одного знака. Очевидно в этом случае всегда достаточно проверить прочность материала в точке .

Разберем практически важный случай, когда к стержню прямоугольного сечения (Рис. 4) приложена внецентренно сила Р в точке А , лежащей на главной оси сечения Оу . Эксцентриситет ОА равен е , размеры сечения b и d . Применяя полученные выше формулы, имеем:

Рис.4. Расчетная схема бруса прямоугольного сечения.

Напряжение в любой точке В равно

Напряжения во всех точках линии, параллельной оси Oz , одинаковы. Положение нейтральной оси определяется отрезками

Нейтральная ось параллельна оси Oz ; точки с наибольшими растягивающими и сжимающими напряжениями расположены на сторонах 1—1 и 3—3.

Значения и получатся, если подставить вместо у его значения . Тогда

Лекция № 28. Ядро сечения при внецентренном сжатии

При конструировании стержней из материалов, плохо сопротивляющихся растяжению (бетон), весьма желательно добиться того, чтобы все сечение работало лишь на сжатие. Этого можно достигнуть, не давая точке приложения силы Р слишком далеко отходить от центра тяжести сечения, ограничивая величину эксцентриситета.

Конструктору желательно заранее знать, какой эксцентриситет при выбранном типе сечения можно допустить, не рискуя вызвать в сечениях стержня напряжений разных знаков. Здесь вводится понятие о так называемом ядре сечения . Этим термином обозначается некоторая область вокруг центра тяжести сечения, внутри которой можно располагать точку приложения силы Р, не вызывая в сечении напряжений разного знака.

Пока точка А располагается внутри ядра, нейтральная ось не пересекает контура сечения, все оно лежит по одну сторону от нейтральной оси и, стало быть, работает лишь на сжатие. При удалении точки А от центра тяжести сечения нейтральная ось будет приближаться к контуру; граница ядра определится тем, что при расположении точки А на этой границе нейтральная ось подойдет вплотную к сечению, коснется его.

Рис.1. Комбинации положения сжимающей силы и нейтральной линии

Таким образом, если мы будем перемещать точку А так, чтобы нейтральная ось катилась по контуру сечения, не пересекая его, то точка А обойдет по границе ядра сечения. Если контур сечения имеет «впадины», то нейтральная ось будет катиться по огибающей контура.

Чтобы получить очертание ядра, необходимо дать нейтральной оси несколько положений, касательных к контуру сечения, определить для этих положений отрезки и и вычислить координаты и точки приложения силы по формулам, вытекающим из известных зависимостей:

это и будут координаты точек контура ядра и .

При многоугольной форме контура сечения (Рис.2), совмещая последовательно нейтральную ось с каждой из сторон многоугольника, мы по отрезкам и определим координаты и точек границы ядра, соответствующих этим сторонам.

При переходе от одной стороны контура сечения к другой нейтральная ось будет вращаться вокруг вершины, разделяющей эти стороны; точка приложения силы будет перемещаться по границе ядра между полученными уже точками. Установим, как должна перемещаться сила Р , чтобы нейтральная ось проходила все время через одну и ту же точку В (,) — вращалась бы около нее. Подставляя координаты этой точки нейтральной оси в известное уравнение нейтральной оси (линии), получим:

Рис.2. Ядро сечения для многоугольной формы поперечного сечения

Таким образом координаты и точки приложения силы Р связаны линейно. При вращении нейтральной оси около постоянной точки В точка А приложения силы движется по прямой. Обратно, перемещение силы Р по прямой связано с вращением нейтральной оси около постоянной точки.

На Рис.3 изображены три положения точки приложения силы на этой прямой и соответственно три положения нейтральной оси. Таким образом, при многоугольной форме контура сечения очертание ядра между точками, соответствующими сторонам многоугольника, будет состоять из отрезков прямых линий.

Рис.3. Динамика построения ядра сечения

Если контур сечения целиком или частично ограничен кривыми линиями, то построение границы ядра можно вести по точкам. Рассмотрим несколько простых примеров построения ядра сечения.

При выполнении этого построения для прямоугольного поперечного сечения воспользуемся полученными формулами.

Для определения границ ядра сечения при движении точки А по оси Оу найдем то значение , при котором нейтральная ось займет положение Н 1 О 1

Рис.4. построение ядра для прямоугольного сечения.

Для этого сила должна двигаться по прямой 1 — 2. Точно так же можно доказать, что остальными границами ядра будут линии 2—3, 3—4 и 4—1.

Таким образом, для прямоугольного сечения ядро будет ромбом с диагоналями, равными одной трети соответствующей стороны сечения. Поэтому прямоугольное сечение при расположении силы по главной оси работает на напряжения одного знака, если точка приложения силы не выходит за пределы средней трети стороны сечения.

Рис.5. Динамика изменения напряжений при изменении эксцентриситета.

Эпюры распределения нормальных напряжений по прямоугольному сечению при эксцентриситете, равном нулю, меньшем, равном и большем одной шестой ширины сечения, изображены на Рис.5.

Отметим, что при всех положениях силы Р напряжение в центре тяжести сечения (точка О ABCD, описанного около двутавра (Рис.6а). Следовательно, очертание ядра для двутавра имеет форму ромба, как и для прямоугольника, но с другими размерами.

Для швеллера, как и для двутавра, точки 1, 2, 3, 4 контура ядра (Рис.6 б) соответствуют совпадению нейтральной оси со сторонами прямоугольника ABCD .

Лекция № 29. Совместные действия изгиба и кручения призматического стержня

Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).

Рис.1. Расчетная схема изогнутого и скрученного вала

Внецентренным растяжением или сжатием называется такой вид деформации стержня, при котором в его поперечном сечении возникают продольная сила и изгибающие моменты (и, быть может, поперечные силы ).

Продольная сила и изгибающие моменты могут рассматриваться как результат воздействия на стержень внецентренно приложенной силы (рис. 25). Именно поэтому такой вид сложного сопротивления называют внецентренным растяжением или сжатием.

Изгибающие моменты связаны с координатами точки приложения силы соотношениями Поэтому из (1), формулы (1) гл. 3 и принципа независимости действия сил для нормальных напряжений в произвольной точке любого поперечного сечения с координатами х, у получим

Нейтральная ось при внецентренном растяжении или сжатии. Уравнение нейтральной оси поперечного сечения, в точках которой напряжения равны нулю, имеет в данном случае вид

Нетрудно видеть, что нейтральная ось не проходит через центр тяжести сечения. Остальные свойства такие же, как и при косом изгибе. Дополнительно укажем еще одно свойство нейтральной оси при внецентренном растяжении или сжатии: нейтральная ось не пересекает той четверти сечения, в которой приложена сила

Ядро сечения. Положение нейтральной оси, как видно из уравнения (4), зависит от координат точки приложения силы Если точка приложения силы располагается достаточно близко к центру тяжести сечения, в области, которая называется ядром сечения, то нейтральная ось проходит за пределами поперечного сечения, т.е. все точки сечения испытывают нормальные напряжения одного знака. На рис. 26 показаны ядра для прямоугольного и кругового сечений.

Условия прочности при внецентренном растяжении или сжатии имеют вид ограничений на максимальные нормальные напряжения.

Пример. Вычислить максимальные нормальные напряжения в поперечном сечении внецентренно сжатого стержня прямоугольного сечения при (рис. 27). Точка К приложения силы имеет координаты (рис. 27, б).

Решение. Вычислим геометрические характеристики сечения:

Уравнение нейтральной оси (4) принимает вид Из ее расположения (рис. 27, б) видно, что В и С - наиболее напряженные точки



glavpom.ru - Подстанции. Силовая электроника. Экология. Электротехника